MKLDNNTester.cpp 18.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
18
#include "paddle/trainer/Trainer.h"
T
tensor-tang 已提交
19 20 21 22

namespace paddle {

// init data layer and test layer of both dnn and reference
23
void MKLDNNTester::reset(const TestConfig& dnn,
T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                         const TestConfig& ref,
                         size_t batchSize) {
  const bool trans = false;
  const bool useGpu = false;

  // clear
  configs_.clear();
  layerNames_.clear();
  dataLayers_.clear();
  datas_.clear();
  layerMaps_.clear();
  parameters_.clear();
  testLayers_.clear();

  // resize
  configs_.resize(NUM);
  layerNames_.resize(NUM);
  dataLayers_.resize(NUM);
  datas_.resize(NUM);
  layerMaps_.resize(NUM);
  parameters_.resize(NUM);
  testLayers_.resize(NUM);

  // reset configs and layer names
  configs_[DNN] = dnn;
  configs_[REF] = ref;
  layerNames_[DNN] = "mkldnn";     // the first is mkldnn layer
  layerNames_[REF] = "reference";  // second is reference layer

  // reset others
  for (size_t i = 0; i < NUM; ++i) {
    configs_[i].layerConfig.set_name(layerNames_[i]);
    initDataLayer(configs_[i],
                  &(dataLayers_[i]),
                  &(datas_[i]),
                  &(layerMaps_[i]),
                  layerNames_[i],
                  batchSize,
                  trans,
                  useGpu);
    initTestLayer(
        configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
  }
  refLayer_ = testLayers_[REF];
68
  dnnLayer_ = testLayers_[DNN];
T
tensor-tang 已提交
69 70 71
  EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  setInputImgSize();
72 73 74 75 76 77 78

  // for comparison with Paddle reference results,
  // need manually add cpu device output for test
  MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
  if (dnnLayer) {
    dnnLayer->addOutputArgument(CPU_DEVICE);
  }
T
tensor-tang 已提交
79 80
}

81
void MKLDNNTester::setInputImgSize() {
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      // TODO(TJ): fix me when concat and elewise ready
      dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
      dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
    }
  }
}

// init randome parameters of ref, and copy to mkldnn
92
void MKLDNNTester::randomWgtDatas() {
T
tensor-tang 已提交
93 94 95 96 97 98 99
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  for (size_t i = 0; i < parameters_[REF].size(); ++i) {
    const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    parameters_[REF][i]->randomize();
    dnnValue->copyFrom(*refValue);

100
    VLOG(MKLDNN_TESTS) << "Random weight " << parameters_[DNN][i]->getName();
T
tensor-tang 已提交
101 102 103 104 105
    printVector(dnnValue);
  }
}

// random botdata of ref layer and copy same to mkldnn
106
void MKLDNNTester::randomBotDatas() {
T
tensor-tang 已提交
107 108 109 110 111
  CHECK_EQ(dataLayers_.size(), NUM);
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
    dataLayers_[DNN][i]->getOutputValue()->copyFrom(
        *(dataLayers_[REF][i]->getOutputValue()));
112
    VLOG(MKLDNN_TESTS) << "Random Foward, InputValue " << i;
T
tensor-tang 已提交
113 114 115 116
    printMatrix(dataLayers_[REF][i]->getOutputValue());
  }
}

117
void MKLDNNTester::randomTopDiffs() {
T
tensor-tang 已提交
118
  refLayer_->getOutputGrad()->randomizeUniform();
119 120
  dnnLayer_->getOutput(CPU_DEVICE)
      .grad->copyFrom(*(refLayer_->getOutputGrad()));
121
  VLOG(MKLDNN_TESTS) << "Random Backward, OutputGrad";
T
tensor-tang 已提交
122 123 124
  printMatrix(refLayer_->getOutputGrad());
}

125
void MKLDNNTester::checkForward() {
126
  VLOG(MKLDNN_TESTS) << "Check Forward";
127
  printTopDatas();
128 129
  double delta =
      compareMatrix(dnnLayer_->getOutputValue(), refLayer_->getOutputValue());
T
tensor-tang 已提交
130 131 132
  EXPECT_LE(fabs(delta), eps_);
}

133
void MKLDNNTester::checkBackwardData() {
134
  VLOG(MKLDNN_TESTS) << "Check Backward Data";
T
tensor-tang 已提交
135 136
  // TODO(TJ): uncomment me when batch norm ready
  // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
T
tensor-tang 已提交
137 138 139
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
    const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
140
    VLOG(MKLDNN_ALL) << "MKLDNN Backward Result: InputGrad " << i;
T
tensor-tang 已提交
141
    printMatrix(dnnDiff);
142
    VLOG(MKLDNN_ALL) << "Reference Backward Result: InputGrad " << i;
T
tensor-tang 已提交
143 144 145 146
    printMatrix(refDiff);

    double delta = compareMatrix(dnnDiff, refDiff);
    EXPECT_LE(fabs(delta), eps_);
T
tensor-tang 已提交
147 148 149 150 151
    // TODO(TJ): uncomment me when batch norm ready
    // if (isBN) {
    //  // the other two inputs in batch norm are for moving mean and var
    //  break;
    // }
T
tensor-tang 已提交
152 153 154
  }
}

155
void MKLDNNTester::checkBackwardWgts() {
156
  VLOG(MKLDNN_TESTS) << "Check Backward Weight";
T
tensor-tang 已提交
157 158 159 160
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  vector<VectorPtr> dnnWgts;  // used to temply save mkldnn weights
  saveWgt(parameters_[DNN], dnnWgts);

161 162 163 164
  MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
  if (dnnLayer) {
    dnnLayer->convertWeightsToPaddle();
  }
T
tensor-tang 已提交
165 166 167
  for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
    const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
168 169
    VLOG(MKLDNN_ALL) << "MKLDNN Result: weight value"
                     << parameters_[DNN][i]->getName();
T
tensor-tang 已提交
170
    printVector(dnn);
171 172
    VLOG(MKLDNN_ALL) << "Reference Result: weight value "
                     << parameters_[REF][i]->getName();
T
tensor-tang 已提交
173 174 175 176 177 178
    printVector(ref);

    double delta = compareVector(dnn, ref);
    EXPECT_LE(fabs(delta), eps_);
  }

T
tensor-tang 已提交
179
  VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
T
tensor-tang 已提交
180 181 182
  restoreWgt(dnnWgts, parameters_[DNN]);
}

183
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
T
tensor-tang 已提交
184 185 186 187 188 189 190 191 192 193
                           vector<VectorPtr>& to) {
  const bool useGpu = false;
  to.resize(from.size());
  for (size_t i = 0; i < to.size(); ++i) {
    const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
    to[i] = Vector::create(wgt->getSize(), useGpu);
    to[i]->copyFrom(*wgt);
  }
}

194
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
T
tensor-tang 已提交
195 196 197 198 199 200 201 202 203
                              vector<ParameterPtr>& to) {
  CHECK_EQ(from.size(), to.size());
  for (size_t i = 0; i < from.size(); ++i) {
    const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
    wgt->copyFrom(*from[i]);
  }
}

// clear parameters grad
204 205
void MKLDNNTester::clearWgtDiffs(size_t id) {
  CHECK_LE(id, parameters_.size());
T
tensor-tang 已提交
206
  for (size_t n = 0; n < parameters_.size(); ++n) {
207 208 209 210 211 212
    if (id == n || id == parameters_.size()) {
      for (size_t i = 0; i < parameters_[n].size(); ++i) {
        const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
        if (grad) {
          grad->zeroMem();
        }
T
tensor-tang 已提交
213 214 215 216 217
      }
    }
  }
}

218 219
void MKLDNNTester::clearBotDiffs(size_t id) {
  CHECK_LE(id, dataLayers_.size());
T
tensor-tang 已提交
220
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
221 222 223 224 225
    if (id == n || id == dataLayers_.size()) {
      // clear inputs layers of this specific layer
      for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
        dataLayers_[n][i]->getOutputGrad()->zeroMem();
      }
T
tensor-tang 已提交
226 227 228 229
    }
  }
}

230 231
void MKLDNNTester::clearTopDatas(size_t id) {
  CHECK_LE(id, testLayers_.size());
T
tensor-tang 已提交
232
  for (size_t i = 0; i < testLayers_.size(); ++i) {
233 234 235
    if (id == i || id == testLayers_.size()) {
      testLayers_[i]->getOutputValue()->zeroMem();
    }
T
tensor-tang 已提交
236 237 238
  }
}

239
void MKLDNNTester::printTopDatas() {
T
tensor-tang 已提交
240 241 242 243 244
  if (!log_) {
    return;
  }

  for (int n = 0; n < NUM; ++n) {
245 246
    VLOG(MKLDNN_ALL) << testLayers_[n]->getType()
                     << " Forward Result: OutputValue";
T
tensor-tang 已提交
247 248 249 250
    printMatrix(testLayers_[n]->getOutputValue());
  }
}

251
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
T
tensor-tang 已提交
252 253 254
  if (!log_) {
    return;
  }
T
tensor-tang 已提交
255 256 257

  std::ostringstream ostr;
  m->print(ostr);
258
  VLOG(MKLDNN_ALL) << std::endl << ostr.str();
T
tensor-tang 已提交
259 260
}

261
void MKLDNNTester::printVector(const VectorPtr& v) {
T
tensor-tang 已提交
262 263 264 265
  if (!log_) {
    return;
  }

T
tensor-tang 已提交
266 267
  std::ostringstream ostr;
  v->print(ostr, v->getSize());
268
  VLOG(MKLDNN_ALL) << std::endl << ostr.str();
T
tensor-tang 已提交
269 270
}

271
double MKLDNNTester::getDelta(const real* d1,
T
tensor-tang 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                              const real* d2,
                              size_t len,
                              const float failRate,
                              const float thres) {
  double delta = 0, sum = 0;
  int failCnt = 0;
  const double eps = 1e-5;
  double maxOut = 0;
  for (size_t i = 0; i < len; ++i) {
    double ref = fabs(d2[i]);
    double diff = fabs(d1[i] - d2[i]);
    delta += diff;
    sum += ref;
    if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
      maxOut = std::max(maxOut, diff / ref);
      failCnt++;
    }
  }
  EXPECT_TRUE(std::isnormal(sum));
  EXPECT_FALSE(std::isinf(sum));
  EXPECT_FALSE(std::isnan(delta));
T
tensor-tang 已提交
293 294
  VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
                   << ", delta: " << delta / sum << ", failCnt:" << failCnt;
T
tensor-tang 已提交
295 296 297
  return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}

298
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
T
tensor-tang 已提交
299 300 301 302
  CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
  return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}

303
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
T
tensor-tang 已提交
304 305 306 307
  CHECK_EQ(v1->getSize(), v2->getSize());
  return getDelta(v1->getData(), v2->getData(), v1->getSize());
}

308
void MKLDNNTester::runOnce() {
T
tensor-tang 已提交
309 310 311 312 313 314 315
  // test forward
  randomBotDatas();
  dnnLayer_->forward(PASS_TRAIN);
  refLayer_->forward(PASS_TRAIN);
  checkForward();

  // test backward
316 317 318 319
  // simple updater
  UpdateCallback updateCallback = [](Parameter* para) {
    auto& grad = para->getBuf(PARAMETER_GRADIENT);
    auto& value = para->getBuf(PARAMETER_VALUE);
320
    real lr = 1e-2;
321
    value->add(*grad, lr);
322
    grad->zeroMem();
323
  };
T
tensor-tang 已提交
324
  randomTopDiffs();
325 326
  dnnLayer_->backward(updateCallback);
  refLayer_->backward(updateCallback);
T
tensor-tang 已提交
327 328 329 330 331
  checkBackwardData();
  checkBackwardWgts();

  // clear buffers
  // ref code will addto the diff, dnn code will writeto it
332
  // and clearTopDatas(REF) should be coverd by ref layers
T
tensor-tang 已提交
333
  clearBotDiffs(REF);
334
  clearWgtDiffs(REF);
335 336 337 338
  // it is necessary to clear bottom diffs when only activation is dnn type
  if (configs_[DNN].layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) {
    clearBotDiffs(DNN);
  }
T
tensor-tang 已提交
339 340
}

341
void MKLDNNTester::run(const TestConfig& dnn,
T
tensor-tang 已提交
342 343 344 345
                       const TestConfig& ref,
                       size_t batchSize,
                       size_t inputImgH,
                       size_t inputImgW,
346
                       bool printDetails,
T
tensor-tang 已提交
347
                       size_t iter,
348
                       float epsilon) {
349 350 351 352 353 354 355 356 357 358 359 360 361
  CHECK(dnn.layerConfig.type().compare(0, 7, "mkldnn_") == 0 ||
        dnn.layerConfig.active_type().compare(0, 7, "mkldnn_") == 0)
      << "should be MKLDNN layer or MKLDNN activation";
  if (dnn.layerConfig.type() == ref.layerConfig.type()) {
    VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
                       << dnn.layerConfig.active_type() << " vs "
                       << ref.layerConfig.active_type();
  } else {
    VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
                       << dnn.layerConfig.type() << " vs "
                       << ref.layerConfig.type();
  }

T
tensor-tang 已提交
362 363
  ih_ = inputImgH;
  iw_ = inputImgW;
364
  log_ = printDetails;
T
tensor-tang 已提交
365 366 367
  iter_ = iter;
  eps_ = epsilon;

T
tensor-tang 已提交
368
  // Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
T
tensor-tang 已提交
369
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
370 371 372
  randomWgtDatas();
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
373
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
374
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
375 376
    runOnce();
  }
T
tensor-tang 已提交
377

T
tensor-tang 已提交
378 379 380 381 382
  if (parameters_[DNN].empty()) {
    // has no paramters
    return;
  }

T
tensor-tang 已提交
383 384 385 386
  // After run some iterations, the mkldnn weight has been stored in dnnLayer
  // and we can also get the mkldnn weight parameter header format.
  // Weight parameter should always be index 0 (and bias index 1).
  // TODO(TJ): should also consider mean and var format when batchnorm ready
T
tensor-tang 已提交
387 388 389 390 391 392 393
  int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat();
  int refWgtFmt = parameters_[REF][0]->getHeaderFormat();
  if (dnnWgtFmt == refWgtFmt) {
    // weight format are equal, so no need check more
    return;
  }

T
tensor-tang 已提交
394
  // then save the weights and restart again
T
tensor-tang 已提交
395 396 397 398
  vector<VectorPtr> dnnWgts, refWgts;
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  saveWgt(parameters_[DNN], dnnWgts);
  saveWgt(parameters_[REF], refWgts);
T
tensor-tang 已提交
399

T
tensor-tang 已提交
400
  // restart again with dnn weight format
T
tensor-tang 已提交
401
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
402 403
  // TODO(TJ): should also considerate mean and var format when batchnorm ready
  parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt);
T
tensor-tang 已提交
404

T
tensor-tang 已提交
405 406 407 408 409
  // restore wgt
  restoreWgt(dnnWgts, parameters_[DNN]);
  restoreWgt(refWgts, parameters_[REF]);
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
410

T
tensor-tang 已提交
411
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
412
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
413 414 415 416
    runOnce();
  }
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
void MKLDNNTester::initArgument(DataIn& data,
                                const std::string& configPath,
                                const size_t iter) {
  TrainerConfigHelper config(configPath);
  size_t batchSize = config.getOptConfig().batch_size();
  data.inArgs.resize(iter);
  data.outGrads.resize(iter);
  data.paraValues.clear();
  for (const auto& layer_name : config.getModelConfig().input_layer_names()) {
    auto layer_config = std::find_if(config.getModelConfig().layers().begin(),
                                     config.getModelConfig().layers().end(),
                                     [=](const LayerConfig& layer_config) {
                                       return layer_config.name() == layer_name;
                                     });
    CHECK(layer_config != config.getModelConfig().layers().end());

    size_t layerSize = layer_config->size();
    for (size_t i = 0; i < iter; ++i) {
      Argument arg;
      arg.value = Matrix::create(batchSize, layerSize, false, false);
      arg.grad = Matrix::create(batchSize, layerSize, false, false);
      arg.value->randomizeUniform();
      arg.value->add(-0.5);
      arg.value->sigmoid(*arg.value);
      arg.grad->zeroMem();
      arg.ids = VectorT<int>::create(batchSize, false);
      arg.ids->rand(layerSize);
      generateSequenceStartPositions(batchSize, arg.sequenceStartPositions);
      data.inArgs[i].push_back(arg);
    }
  }

  for (const auto& layer_name : config.getModelConfig().output_layer_names()) {
    auto layer_config = std::find_if(config.getModelConfig().layers().begin(),
                                     config.getModelConfig().layers().end(),
                                     [=](const LayerConfig& layer_config) {
                                       return layer_config.name() == layer_name;
                                     });
    CHECK(layer_config != config.getModelConfig().layers().end());

    size_t layerSize = layer_config->size();
    for (size_t i = 0; i < iter; ++i) {
      MatrixPtr grad = Matrix::create(batchSize, layerSize, false, false);
      grad->randomizeUniform();
      data.outGrads[i].push_back(grad);
    }
  }

  for (const auto& para_config : config.getModelConfig().parameters()) {
    VectorPtr value = Vector::create(para_config.size(), false);
    value->randnorm(0, 2);
    data.paraValues.push_back(value);
  }
}

void MKLDNNTester::getOutResult(const std::string& configPath,
                                DataIn& in,
                                DataOut& out,
                                bool use_mkldnn,
                                size_t iter) {
  FLAGS_use_gpu = false;
  FLAGS_use_mkldnn = use_mkldnn;
  *ThreadLocalRand::getSeed() = 1;
  srand(1);

  Trainer trainer;
  auto config = std::make_shared<TrainerConfigHelper>(configPath);
  trainer.init(config, false);
  auto gradientMachine = trainer.getGradientMachine();
  std::vector<ParameterPtr> parameters = gradientMachine->getParameters();
  for (size_t i = 0; i < in.paraValues.size(); i++) {
    parameters[i]->getBuf(PARAMETER_VALUE)->copyFrom(*in.paraValues[i]);
  }
  UpdateCallback simpleUpdate = [](Parameter* para) {
    auto& grad = para->getBuf(PARAMETER_GRADIENT);
    auto& value = para->getBuf(PARAMETER_VALUE);
    real lr = 1e-2;
    value->add(*grad, lr);
    grad->zeroMem();
  };

  vector<Argument> outArgs;
  gradientMachine->start();
  out.outValues.clear();
  out.paraValues.clear();
  for (size_t i = 0; i < iter; ++i) {
    VLOG(MKLDNN_TESTS) << "runing iteration " << i;
    gradientMachine->forward(in.inArgs[i], &outArgs, PASS_TRAIN);
    // save forward result
    for (size_t k = 0; k < outArgs.size(); k++) {
      MatrixPtr value = Matrix::create(outArgs[k].value->getHeight(),
                                       outArgs[k].value->getWidth(),
                                       false,
                                       false);
      value->copyFrom(*outArgs[k].value);
      out.outValues.push_back(value);
    }

    // random backward input
    for (size_t k = 0; k < outArgs.size(); k++) {
      outArgs[k].grad->copyFrom(*in.outGrads[i][k]);
    }
    gradientMachine->backward(simpleUpdate);
  }
  gradientMachine->finish();

  // save param value
  for (size_t i = 0; i < in.paraValues.size(); i++) {
    VectorPtr val = Vector::create(
        parameters[i]->getBuf(PARAMETER_VALUE)->getSize(), false);
    val->copyFrom(*parameters[i]->getBuf(PARAMETER_VALUE));
    out.paraValues.push_back(val);
  }
}

void MKLDNNTester::compareResult(DataOut& ref, DataOut& dnn, float eps) {
  CHECK_EQ(ref.outValues.size(), dnn.outValues.size());
  CHECK_EQ(ref.paraValues.size(), dnn.paraValues.size());
535
  VLOG(MKLDNN_TESTS) << "compare value size: " << ref.outValues.size();
536 537 538
  for (size_t i = 0; i < ref.outValues.size(); i++) {
    EXPECT_LE(fabs(compareMatrix(ref.outValues[i], dnn.outValues[i])), eps);
  }
539
  VLOG(MKLDNN_TESTS) << "compare param size: " << ref.outValues.size();
540 541 542 543 544 545 546 547 548 549 550
  for (size_t i = 0; i < ref.paraValues.size(); i++) {
    EXPECT_LE(fabs(compareVector(ref.paraValues[i], dnn.paraValues[i])), eps);
  }
}

void MKLDNNTester::runBranchesTest(const std::string& configPath,
                                   size_t iter,
                                   float eps) {
  DataIn in;
  initArgument(in, configPath, iter);
  DataOut outCpu, outDnn;
551
  VLOG(MKLDNN_TESTS) << "runing cpu network";
552
  getOutResult(configPath, in, outCpu, false, iter);
553
  VLOG(MKLDNN_TESTS) << "runing mkldnn network";
554 555 556 557 558
  getOutResult(configPath, in, outDnn, true, iter);

  compareResult(outCpu, outDnn, eps);
}

T
tensor-tang 已提交
559
}  //  namespace paddle