block_expand_op.cc 4.7 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/block_expand_op.h"

namespace paddle {
namespace operators {

class BlockExpandOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
G
gongweibao 已提交
26
    using namespace framework;
G
gongweibao 已提交
27
    PADDLE_ENFORCE(ctx->HasInput("X"),
G
gongweibao 已提交
28 29
                   "Input of BlockExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
G
gongweibao 已提交
30
                   "Output of BlockExpandOp op should not be null.");
G
gongweibao 已提交
31

G
gongweibao 已提交
32
    auto in_dim = ctx->GetInputDim("X");
G
gongweibao 已提交
33 34 35
    PADDLE_ENFORCE_EQ(in_dim.size(), 4, "Input format  must be NCHW.");
    PADDLE_ENFORCE_GE(in_dim[0], 1, "Input batchsize must >= 1.");

G
gongweibao 已提交
36 37 38 39 40 41
    int block_height = ctx->Attrs().Get<int>("blockHeight");
    int block_width = ctx->Attrs().Get<int>("blockWidth");
    int stride_height = ctx->Attrs().Get<int>("strideHeight");
    int stride_width = ctx->Attrs().Get<int>("strideWidth");
    int padding_height = ctx->Attrs().Get<int>("paddingHeight");
    int padding_width = ctx->Attrs().Get<int>("paddingWidth");
G
gongweibao 已提交
42 43 44

    int N = in_dim[0];
    int C = in_dim[1];
G
gongweibao 已提交
45 46
    int img_height = in_dim[3];
    int img_width = in_dim[4];
G
gongweibao 已提交
47

G
gongweibao 已提交
48 49
    int output_height = 0;
    int output_width = 0;
G
gongweibao 已提交
50

G
gongweibao 已提交
51 52 53 54
    get_blockexpand_output_shape(img_height, img_width, block_height,
                                 block_width, stride_height, stride_width,
                                 padding_height, padding_width, output_height,
                                 output_width);
G
gongweibao 已提交
55

G
gongweibao 已提交
56
    // The result of im2col is [output_height, output_width,
G
gongweibao 已提交
57 58
    // inputChannels, filterHeight, filterWidth], and it is easy to
    // reshape into [seqLength, stepSize], where seqLength is equal
G
gongweibao 已提交
59
    // output_height * output_width, stepSize is equal
G
gongweibao 已提交
60 61
    // input_channels * blockHeight * blockWidth
    ctx->SetOutputDim(
G
gongweibao 已提交
62
        "Out", {N, output_height, output_width, C, block_height, block_width});
G
gongweibao 已提交
63 64

    // ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
65 66 67 68 69 70 71 72
  }
};

class BlockExpandOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BlockExpandOpMaker(framework::OpProto* proto,
                     framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
G
gongweibao 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86
    AddInput("X", R"DOC(
(Tensor)The input tensor has NCHW format.
    N: batch size
    C: channels
    H: height
    W: width
)DOC");
    AddOutput("Out", "(LodTensor)The output data of block_expand op,");
    AddAttr<int>("blockHeight", "(int)height of block.");
    AddAttr<int>("blockWidth", "(int)width of block.");
    AddAttr<int>("strideHeight", "(int)height of stride.");
    AddAttr<int>("strideWidth", "(int)width of stride.");
    AddAttr<int>("paddingHeight", "(int)height of padding.");
    AddAttr<int>("paddingWidth", "(int)width of padding.");
G
gongweibao 已提交
87 88
    AddComment(R"DOC(
Expand feature map to minibatch matrix.
G
gongweibao 已提交
89
- matirx height is: output_height * output_width
G
gongweibao 已提交
90
- matrix width is: blockHeight * blockWidth * channels
G
gongweibao 已提交
91

G
gongweibao 已提交
92 93
output_height = 
    1 + (2 * paddingHeight + img_height - blockHeight + strideHeight - 1) /
G
gongweibao 已提交
94
            strideHeight;
G
gongweibao 已提交
95 96
output_width = 
    1 + (2 * paddingWidth + img_width - blockWidth + strideWidth - 1) /
G
gongweibao 已提交
97
            strideWidth;
G
gongweibao 已提交
98 99

The expand method is the same with ExpandConvLayer, but saved the transposed
G
gongweibao 已提交
100
value. After expanding, The number of time steps are output_height * output_width
G
gongweibao 已提交
101 102
and the dimension of each time step is blockHeight * blockWidth * channels.
This layer can be used after convolution neural network, and before recurrent neural network.
G
gongweibao 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
)DOC");
  }
};

class BlockExpandGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {}
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(block_expand, ops::BlockExpandOp, ops::BlockExpandOpMaker,
            block_expand_grad, ops::BlockExpandOpGrad);
REGISTER_OP_CPU_KERNEL(
G
gongweibao 已提交
122
    block_expand, ops::BlockExpandKernel<paddle::platform::CPUPlace, float>);
G
gongweibao 已提交
123 124 125
REGISTER_OP_CPU_KERNEL(
    block_expand_grad,
    ops::BlockExpandGradKernel<paddle::platform::CPUPlace, float>);