wmt14.py 5.5 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Q
qijun 已提交
15
WMT14 dataset.
Q
qijun 已提交
16 17
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
Q
qijun 已提交
18
http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and
Q
qijun 已提交
19
parse training set and test set into paddle reader creators.
Q
qijun 已提交
20

H
Helin Wang 已提交
21
"""
Q
qiaolongfei 已提交
22
import tarfile
L
Luo Tao 已提交
23
import gzip
Q
qiaolongfei 已提交
24

25
import paddle.dataset.common
H
Helin Wang 已提交
26

Y
ying 已提交
27 28 29 30 31 32
__all__ = [
    'train',
    'test',
    'get_dict',
    'convert',
]
H
Helin Wang 已提交
33

Y
ying 已提交
34 35
URL_DEV_TEST = ('http://www-lium.univ-lemans.fr/~schwenk/'
                'cslm_joint_paper/data/dev+test.tgz')
H
Helin Wang 已提交
36
MD5_DEV_TEST = '7d7897317ddd8ba0ae5c5fa7248d3ff5'
Y
ying 已提交
37 38
# this is a small set of data for test. The original data is too large and
# will be add later.
L
luotao1 已提交
39
URL_TRAIN = ('http://paddlemodels.bj.bcebos.com/wmt/wmt14.tgz')
L
Luo Tao 已提交
40
MD5_TRAIN = '0791583d57d5beb693b9414c5b36798c'
41
# BLEU of this trained model is 26.92
T
typhoonzero 已提交
42
URL_MODEL = 'http://paddlemodels.bj.bcebos.com/wmt%2Fwmt14.tgz'
43
MD5_MODEL = '0cb4a5366189b6acba876491c8724fa3'
Q
qiaolongfei 已提交
44 45 46 47 48 49

START = "<s>"
END = "<e>"
UNK = "<unk>"
UNK_IDX = 2

Q
qiaolongfei 已提交
50

Y
ying 已提交
51 52
def __read_to_dict(tar_file, dict_size):
    def __to_dict(fd, size):
Q
qiaolongfei 已提交
53
        out_dict = dict()
Q
qiaolongfei 已提交
54 55
        for line_count, line in enumerate(fd):
            if line_count < size:
Q
qiaolongfei 已提交
56 57 58
                out_dict[line.strip()] = line_count
            else:
                break
Q
qiaolongfei 已提交
59 60 61 62 63 64 65 66
        return out_dict

    with tarfile.open(tar_file, mode='r') as f:
        names = [
            each_item.name for each_item in f
            if each_item.name.endswith("src.dict")
        ]
        assert len(names) == 1
Y
ying 已提交
67
        src_dict = __to_dict(f.extractfile(names[0]), dict_size)
Q
qiaolongfei 已提交
68 69 70 71 72
        names = [
            each_item.name for each_item in f
            if each_item.name.endswith("trg.dict")
        ]
        assert len(names) == 1
Y
ying 已提交
73
        trg_dict = __to_dict(f.extractfile(names[0]), dict_size)
Q
qiaolongfei 已提交
74 75 76 77 78
        return src_dict, trg_dict


def reader_creator(tar_file, file_name, dict_size):
    def reader():
Y
ying 已提交
79
        src_dict, trg_dict = __read_to_dict(tar_file, dict_size)
Q
qiaolongfei 已提交
80 81 82 83
        with tarfile.open(tar_file, mode='r') as f:
            names = [
                each_item.name for each_item in f
                if each_item.name.endswith(file_name)
H
Helin Wang 已提交
84
            ]
Q
qiaolongfei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            for name in names:
                for line in f.extractfile(name):
                    line_split = line.strip().split('\t')
                    if len(line_split) != 2:
                        continue
                    src_seq = line_split[0]  # one source sequence
                    src_words = src_seq.split()
                    src_ids = [
                        src_dict.get(w, UNK_IDX)
                        for w in [START] + src_words + [END]
                    ]

                    trg_seq = line_split[1]  # one target sequence
                    trg_words = trg_seq.split()
                    trg_ids = [trg_dict.get(w, UNK_IDX) for w in trg_words]

                    # remove sequence whose length > 80 in training mode
                    if len(src_ids) > 80 or len(trg_ids) > 80:
                        continue
                    trg_ids_next = trg_ids + [trg_dict[END]]
                    trg_ids = [trg_dict[START]] + trg_ids

                    yield src_ids, trg_ids, trg_ids_next

    return reader


def train(dict_size):
Q
qijun 已提交
113
    """
Q
qijun 已提交
114
    WMT14 training set creator.
Q
qijun 已提交
115

Q
qijun 已提交
116 117 118
    It returns a reader creator, each sample in the reader is source language
    word ID sequence, target language word ID sequence and next word ID
    sequence.
Q
qijun 已提交
119

Q
qijun 已提交
120
    :return: Training reader creator
Q
qijun 已提交
121 122
    :rtype: callable
    """
Q
qiaolongfei 已提交
123
    return reader_creator(
124
        paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
R
root 已提交
125
        'train/train', dict_size)
Q
qiaolongfei 已提交
126 127 128


def test(dict_size):
Q
qijun 已提交
129 130 131
    """
    WMT14 test set creator.

Q
qijun 已提交
132 133 134
    It returns a reader creator, each sample in the reader is source language
    word ID sequence, target language word ID sequence and next word ID
    sequence.
Q
qijun 已提交
135

Q
qijun 已提交
136
    :return: Test reader creator
Q
qijun 已提交
137 138
    :rtype: callable
    """
Q
qiaolongfei 已提交
139
    return reader_creator(
140
        paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
R
root 已提交
141
        'test/test', dict_size)
Y
Yancey1989 已提交
142 143


L
Luo Tao 已提交
144 145
def gen(dict_size):
    return reader_creator(
146
        paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN),
R
root 已提交
147
        'gen/gen', dict_size)
L
Luo Tao 已提交
148 149 150 151 152


def get_dict(dict_size, reverse=True):
    # if reverse = False, return dict = {'a':'001', 'b':'002', ...}
    # else reverse = true, return dict = {'001':'a', '002':'b', ...}
153
    tar_file = paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN)
Y
ying 已提交
154
    src_dict, trg_dict = __read_to_dict(tar_file, dict_size)
L
Luo Tao 已提交
155
    if reverse:
156 157
        src_dict = {v: k for k, v in list(src_dict.items())}
        trg_dict = {v: k for k, v in list(trg_dict.items())}
L
Luo Tao 已提交
158
    return src_dict, trg_dict
L
Luo Tao 已提交
159 160


161
def fetch():
162 163
    paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN)
    paddle.dataset.common.download(URL_MODEL, 'wmt14', MD5_MODEL)
R
root 已提交
164 165 166 167 168 169 170


def convert(path):
    """
    Converts dataset to recordio format
    """
    dict_size = 30000
171 172
    paddle.dataset.common.convert(path, train(dict_size), 1000, "wmt14_train")
    paddle.dataset.common.convert(path, test(dict_size), 1000, "wmt14_test")