tensor.cc 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/api/include/tensor.h"

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22
#include "paddle/pten/api/include/utils.h"
23 24 25
#include "paddle/pten/api/lib/ext_compat_utils.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/api/lib/utils/storage.h"
26
#include "paddle/pten/core/compat_utils.h"
27
#include "paddle/pten/core/convert_utils.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/tensor_base.h"
#include "paddle/pten/core/tensor_meta.h"

/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, pten], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
54 55
#include "paddle/pten/common/complex.h"
#include "paddle/pten/common/float16.h"
56
#include "paddle/pten/core/ddim.h"
57 58 59 60

namespace paddle {
namespace experimental {

61 62 63
// declare cast api
Tensor cast(const Tensor &x, DataType out_dtype);

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

Tensor::Tensor(std::shared_ptr<pten::TensorBase> tensor_impl)
    : impl_(std::move(tensor_impl)) {
  PADDLE_ENFORCE_NOT_NULL(impl_,
                          platform::errors::InvalidArgument(
                              "TensorImpl with nullptr is not supported"));
}

Tensor::Tensor(const PlaceType &place)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
                                          framework::make_ddim({}),
                                          pten::DataLayout::NCHW))))) {}

Tensor::Tensor(const PlaceType &place, const std::vector<int64_t> &shape)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
                                          framework::make_ddim(shape),
                                          pten::DataLayout::NCHW))))) {}

/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

97
pten::framework::DDim Tensor::dims() const { return impl_->dims(); }
98 99

std::vector<int64_t> Tensor::shape() const {
100
  return pten::framework::vectorize<int64_t>(impl_->dims());
101 102 103
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
104 105 106 107 108 109 110 111
  LOG(WARNING) << "The function of resetting the shape of the uninitialized "
                  "Tensor of the `reshape` method is deprecated since version "
                  "2.3, and will be removed in version 2.4, please use "
                  "`paddle::experimental::full` method to create a new Tensor "
                  "instead. "
                  "reason: `reshape` means changing the tensor shape without "
                  "touching underlying data, this requires the total size of "
                  "the tensor to remain constant.";
C
Chen Weihang 已提交
112
  if (is_dense_tensor()) {
113 114 115 116 117 118
    std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->set_meta(
        pten::DenseTensorMeta(dtype(), framework::make_ddim(shape)));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Only support reshape operation on DenseTensor now."));
  }
119 120
}

121
DataType Tensor::dtype() const { return impl_->dtype(); }
122

123
DataType Tensor::type() const { return impl_->dtype(); }
124 125 126

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
127 128 129 130
bool Tensor::is_dense_tensor() const {
  return pten::DenseTensor::classof(impl_.get());
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* Part 3: Device and Backend methods */

PlaceType Tensor::place() const {
  return ConvertInnerPlaceToExtPlace(impl_->place());
}

paddle::platform::Place Tensor::inner_place() const { return impl_->place(); }

bool Tensor::is_cpu() const {
  return paddle::platform::is_cpu_place(impl_->place());
}

bool Tensor::is_cuda() const {
  return paddle::platform::is_gpu_place(impl_->place());
}

/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
C
Chen Weihang 已提交
151
  if (is_dense_tensor()) {
152 153
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        ConvertExtPlaceToInnerPlace(place()));
154 155 156 157
  }
  return nullptr;
}

158 159 160 161 162 163 164 165 166
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
template PADDLE_API paddle::platform::complex<float>
167
    *Tensor::mutable_data<paddle::platform::complex<float>>();
168
template PADDLE_API paddle::platform::complex<double>
169
    *Tensor::mutable_data<paddle::platform::complex<double>>();
170
template PADDLE_API paddle::platform::float16 *
171 172 173 174 175
Tensor::mutable_data<paddle::platform::float16>();

template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  auto inner_place = ConvertExtPlaceToInnerPlace(place);
176 177 178 179 180 181 182 183 184 185 186 187
  if (impl_->initialized()) {
    PADDLE_ENFORCE_EQ(
        platform::is_same_place(inner_place, impl_->place()),
        true,
        platform::errors::Unimplemented("Modification of tensor place through "
                                        "mutable_data is not supported now"));
  }
  if (is_dense_tensor()) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        inner_place);
  }
  return nullptr;
188 189
}

190 191
template PADDLE_API float *Tensor::mutable_data<float>(const PlaceType &place);
template PADDLE_API double *Tensor::mutable_data<double>(
192
    const PlaceType &place);
193
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(
194
    const PlaceType &place);
195
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(
196
    const PlaceType &place);
197
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(
198
    const PlaceType &place);
199
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(
200
    const PlaceType &place);
201
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(
202
    const PlaceType &place);
203 204
template PADDLE_API bool *Tensor::mutable_data<bool>(const PlaceType &place);
template PADDLE_API paddle::platform::complex<float> *
205
Tensor::mutable_data<paddle::platform::complex<float>>(const PlaceType &place);
206
template PADDLE_API paddle::platform::complex<double> *
207
Tensor::mutable_data<paddle::platform::complex<double>>(const PlaceType &place);
208
template PADDLE_API paddle::platform::float16 *
209 210 211 212
Tensor::mutable_data<paddle::platform::float16>(const PlaceType &place);

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
213
  if (is_dense_tensor()) {
214 215
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        ConvertExtPlaceToInnerPlace(place()));
216 217 218 219
  }
  return nullptr;
}

220 221 222 223 224 225 226 227 228
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
template PADDLE_API const paddle::platform::complex<float>
229
    *Tensor::data<paddle::platform::complex<float>>() const;
230
template PADDLE_API const paddle::platform::complex<double>
231
    *Tensor::data<paddle::platform::complex<double>>() const;
232
template PADDLE_API const paddle::platform::float16 *
233
Tensor::data<paddle::platform::float16>() const;
234
template PADDLE_API const paddle::platform::bfloat16 *
235
Tensor::data<paddle::platform::bfloat16>() const;
236 237 238 239 240 241 242 243 244 245

template <typename T>
T *Tensor::data() {
  PADDLE_THROW(platform::errors::Unimplemented(
      "It is not currently supported to directly obtain the modifiable data "
      "address through the tensor::data<T>() method, please use the "
      "tensor::mutable_data<T>() method."));
  return nullptr;
}

246 247 248 249 250 251 252 253 254
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
template PADDLE_API paddle::platform::complex<float>
255
    *Tensor::data<paddle::platform::complex<float>>();
256
template PADDLE_API paddle::platform::complex<double>
257
    *Tensor::data<paddle::platform::complex<double>>();
258
template PADDLE_API paddle::platform::float16 *
259 260
Tensor::data<paddle::platform::float16>();

261
// TODO(chenweihang): replace slice impl by API
262
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
263
  if (is_dense_tensor()) {
264 265
    return Tensor(std::make_shared<pten::DenseTensor>(
        std::move(pten::CompatibleDenseTensorUtils::Slice(
266
            *(std::dynamic_pointer_cast<pten::DenseTensor>(impl_).get()),
267 268 269 270
            begin_idx,
            end_idx))));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
271
        "Only support slice operation on DenseTensor now."));
272
  }
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
}

std::shared_ptr<pten::TensorBase> Tensor::impl() const { return impl_; }

void Tensor::set_impl(const std::shared_ptr<pten::TensorBase> &impl) {
  impl_ = impl;
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

/* Part 5: Data Transform methods */

template <typename T>
Tensor Tensor::copy_to(const PlaceType &target_place) const {
291
  LOG(WARNING) << "The Tensor's `copy_to` method is deprecated since version "
292
                  "2.3, and will be removed in version 2.4, please use "
293
                  "`copy_to` method without template argument instead. "
294 295
                  "reason: copying a Tensor to another device does not need "
                  "to specify the data type template argument.";
296
  return copy_to(ConvertExtPlaceToBackend(target_place), /*blocking=*/false);
297 298
}

299
template PADDLE_API Tensor
300
Tensor::copy_to<float>(const PlaceType &target_place) const;
301
template PADDLE_API Tensor
302
Tensor::copy_to<double>(const PlaceType &target_place) const;
303
template PADDLE_API Tensor
304
Tensor::copy_to<int64_t>(const PlaceType &target_place) const;
305
template PADDLE_API Tensor
306
Tensor::copy_to<int32_t>(const PlaceType &target_place) const;
307
template PADDLE_API Tensor
308
Tensor::copy_to<uint8_t>(const PlaceType &target_place) const;
309
template PADDLE_API Tensor
310
Tensor::copy_to<int8_t>(const PlaceType &target_place) const;
311
template PADDLE_API Tensor
312
Tensor::copy_to<int16_t>(const PlaceType &target_place) const;
313
template PADDLE_API Tensor
314
Tensor::copy_to<bool>(const PlaceType &target_place) const;
315
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<float>>(
316
    const PlaceType &target_place) const;
317
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<double>>(
318
    const PlaceType &target_place) const;
319
template PADDLE_API Tensor
320 321
Tensor::copy_to<paddle::platform::float16>(const PlaceType &target_place) const;

322 323
Tensor Tensor::copy_to(Backend backend, bool blocking) const {
  return experimental::copy_to(*this, backend, blocking);
324 325
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
void Tensor::copy_(const Tensor &src, bool blocking) {
  if (!src.is_initialized()) {
    return;
  }
  VLOG(3) << "Deep copy Tensor from " << src.name() << " to " << name();
  if (defined()) {
    PADDLE_ENFORCE_EQ(dtype(),
                      src.dtype(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          name(),
                          src.name()));
    PADDLE_ENFORCE_EQ(impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          name(),
                          src.name()));
  }
  auto copy_tensor =
      src.copy_to(pten::TransToPtenBackend(src.inner_place()), blocking);
  set_impl(copy_tensor.impl());
}
351 352
Tensor Tensor::cast(DataType target_type) const {
  return experimental::cast(*this, target_type);
353 354 355 356 357 358
}

/* Part 6: Status utils methods */

bool Tensor::defined() const { return impl_ != nullptr; }

359
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
360 361

bool Tensor::is_initialized() const {
362
  return defined() && impl_->initialized();
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

void Tensor::reset() { impl_.reset(); }

/* Part 7: Operator overloading */

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

}  // namespace experimental
}  // namespace paddle