metrics.py 37.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fluid Metrics
"""
17 18 19

from __future__ import print_function

D
dzhwinter 已提交
20 21 22
import numpy as np
import copy
import warnings
23
import six
D
dzhwinter 已提交
24

D
Dang Qingqing 已提交
25 26 27 28 29
from .layer_helper import LayerHelper
from .initializer import Constant
from . import unique_name
from .framework import Program, Variable, program_guard
from . import layers
30
from .layers import detection
D
Dang Qingqing 已提交
31

D
dzhwinter 已提交
32 33 34
__all__ = [
    'MetricBase',
    'CompositeMetric',
35 36
    'Precision',
    'Recall',
D
dzhwinter 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49
    'Accuracy',
    'ChunkEvaluator',
    'EditDistance',
    'DetectionMAP',
    'Auc',
]


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


def _is_number_(var):
P
peizhilin 已提交
50 51
    return isinstance(var, int) or isinstance(var, np.int64) or isinstance(
        var, float) or (isinstance(var, np.ndarray) and var.shape == (1, ))
D
dzhwinter 已提交
52 53 54 55 56 57 58 59


def _is_number_or_matrix_(var):
    return _is_number_(var) or isinstance(var, np.ndarray)


class MetricBase(object):
    """
P
pkpk 已提交
60 61 62 63
    In many cases, we usually have to split the test data into mini-batches for evaluating 
    deep neural networks, therefore we need to collect the evaluation results of each 
    mini-batch and aggregate them into the final result. The paddle.fluid.metrics is 
    designed for a convenient way of deep neural network evaluation. 
D
dzhwinter 已提交
64

P
pkpk 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    The paddle.fluid.metrics contains serval different evaluation metrics 
    like precision and recall, and most of them have the following functions:

    1. take the prediction result and the corresponding labels of a mini-batch as input, 
    then compute the evaluation result for the input mini-batch.

    2. aggregate the existing evaluation results as the overall performance.

    The class Metric is the base class for all classes in paddle.fluid.metrics, it defines
    the fundmental APIs for all metrics classes, including:

    1. update(preds, labels): given the prediction results (preds) and the labels (labels)
    of some mini-batch, compute the evaluation result of that mini-batch, and memorize the
    evaluation result.

    2. eval(): aggregate all existing evaluation result in the memory, and return the overall
    performance across different mini-batches.

    3. reset(): empty the memory.
84

D
dzhwinter 已提交
85 86
    """

87
    def __init__(self, name):
P
pkpk 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101
        """
        The constructor of the metric class.

        Args:
            name(str): The name of metric instance. such as, "accuracy".
                  It can be used to distinguish different metric instances in a model.

        Returns:
            The constructed class instance.

        Return types:
            The MetricBase or its succeed classes

        """
D
dzhwinter 已提交
102 103 104 105 106 107 108
        self._name = str(name) if name != None else self.__class__.__name__

    def __str__(self):
        return self._name

    def reset(self):
        """
P
pkpk 已提交
109 110 111 112 113 114 115 116 117 118 119
        reset function empties the evaluation memory for previous mini-batches. 
        
        Args:
            None

        Returns:
            None

        Return types:
            None

D
dzhwinter 已提交
120 121 122
        """
        states = {
            attr: value
M
minqiyang 已提交
123
            for attr, value in six.iteritems(self.__dict__)
D
dzhwinter 已提交
124 125
            if not attr.startswith("_")
        }
M
minqiyang 已提交
126
        for attr, value in six.iteritems(states):
D
dzhwinter 已提交
127 128 129 130 131 132 133 134 135 136
            if isinstance(value, int):
                setattr(self, attr, 0)
            elif isinstance(value, float):
                setattr(self, attr, .0)
            elif isinstance(value, (np.ndarray, np.generic)):
                setattr(self, attr, np.zeros_like(value))
            else:
                setattr(self, attr, None)

    def get_config(self):
137 138 139 140 141 142 143 144
        """
        Get the metric and current states.
        The states are the members who do not has "_" prefix.

        Args:
            None

        Returns:
P
pkpk 已提交
145 146 147 148
            a python dict, which costains the inner states of the metric instance

        Return types:
            a python dict
149
        """
D
dzhwinter 已提交
150 151
        states = {
            attr: value
M
minqiyang 已提交
152
            for attr, value in six.iteritems(self.__dict__)
D
dzhwinter 已提交
153 154
            if not attr.startswith("_")
        }
155
        config = {}
D
dzhwinter 已提交
156 157 158
        config.update({"name": self._name, "states": copy.deepcopy(states)})
        return config

159 160
    def update(self, preds, labels):
        """
P
pkpk 已提交
161 162 163 164 165
        Given the prediction results (preds) and the labels (labels)
        of some mini-batch, compute the evaluation result of that mini-batch, 
        and memorize the evaluation result. Please notice that the update function only
        memorizes the evaluation result but would not return the score. If you want to 
        get the evaluation result, please call eval() function.
166 167 168

        Args:
            preds(numpy.array): the predictions of current minibatch
P
pkpk 已提交
169 170 171 172 173 174 175 176
            labels(numpy.array): the labels of current minibatch.

        Returns:
            None

        Return types:
            None        

177 178 179
        """
        raise NotImplementedError(
            "Should not use it directly, please extend it.")
D
dzhwinter 已提交
180 181

    def eval(self):
182
        """
P
pkpk 已提交
183 184 185 186 187
        Aggregate all existing evaluation results in the memory, and return the overall
        performance across different mini-batches.

        Args:
            None
188 189

        Returns:
P
pkpk 已提交
190 191 192
            The overall performance across different mini-batches.

        Return types:
193 194 195 196
            float|list(float)|numpy.array: the metrics via Python.
        """
        raise NotImplementedError(
            "Should not use it directly, please extend it.")
D
dzhwinter 已提交
197 198 199 200


class CompositeMetric(MetricBase):
    """
P
pkpk 已提交
201 202 203 204 205 206 207 208
    This op creates a container that contains the union of all the added metrics. 
    After the metrics added in, calling eval() method will compute all the contained metrics automatically.
    CAUTION: only metrics with the SAME argument list can be added in a CompositeMetric instance.

    Inherit from: `MetricBase <https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/api_cn/metrics_cn.html#paddle.fluid.metrics.MetricBase>`_ 

    Args:
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
209

210 211
    Examples:
        .. code-block:: python
212
            import paddle.fluid as fluid
P
pkpk 已提交
213 214 215 216 217 218 219 220 221 222 223 224
            import numpy as np
            preds = [[0.1], [0.7], [0.8], [0.9], [0.2],
                     [0.2], [0.3], [0.5], [0.8], [0.6]]
            labels = [[0], [1], [1], [1], [1],
                      [0], [0], [0], [0], [0]]
            preds = np.array(preds)
            labels = np.array(labels)
            comp = fluid.metrics.CompositeMetric()
            precision = fluid.metrics.Precision()
            recall = fluid.metrics.Recall()
            comp.add_metric(precision)
            comp.add_metric(recall)
225
            comp.update(preds=preds, labels=labels)
P
pkpk 已提交
226 227 228
            numpy_precision, numpy_recall = comp.eval()
            print("expect precision: %.2f, got %.2f" % ( 3. / 5, numpy_precision ) )
            print("expect recall: %.2f, got %.2f" % (3. / 4, numpy_recall ) )
D
dzhwinter 已提交
229 230
    """

231 232
    def __init__(self, name=None):
        super(CompositeMetric, self).__init__(name)
D
dzhwinter 已提交
233 234
        self._metrics = []

Q
qiaolongfei 已提交
235
    def add_metric(self, metric):
236
        """
P
pkpk 已提交
237 238
        Add a new metric to container. Noted that the argument list 
        of the added one should be consistent with existed ones.  
239 240

        Args:
P
pkpk 已提交
241
            metric(MetricBase): a instance of MetricBase
242
        """
D
dzhwinter 已提交
243 244 245 246
        if not isinstance(metric, MetricBase):
            raise ValueError("SubMetric should be inherit from MetricBase.")
        self._metrics.append(metric)

247 248
    def update(self, preds, labels):
        """
P
pkpk 已提交
249
        Update the metrics of this container.
250 251

        Args:
P
pkpk 已提交
252 253
            preds(numpy.array): predicted results of current mini-batch, the shape and dtype of which should meet the requirements of the corresponded metric.
            labels(numpy.array): ground truth of current mini-batch, the shape and dtype of which should meet the requirements of the corresponded metric. 
254 255
        """
        for m in self._metrics:
D
dzhwinter 已提交
256
            m.update(preds, labels)
257

D
dzhwinter 已提交
258
    def eval(self):
259
        """
P
pkpk 已提交
260
        Calculate the results of all metrics sequentially.
261 262

        Returns:
P
pkpk 已提交
263 264
            list: results of all added metrics. 
            The shape and dtype of each result depend on the defination of its metric.
265
        """
D
dzhwinter 已提交
266 267 268 269 270 271
        ans = []
        for m in self._metrics:
            ans.append(m.eval())
        return ans


272 273 274
class Precision(MetricBase):
    """
    Precision (also called positive predictive value) is the fraction of
P
pkpk 已提交
275
    relevant instances among the retrieved instances. Refer to
276 277
    https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

P
pkpk 已提交
278 279 280 281
    Noted that this class mangages the precision score only for binary classification task.

    Args:
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
282 283 284 285

    Examples:
        .. code-block:: python

286
            import paddle.fluid as fluid
P
pkpk 已提交
287 288
            import numpy as np

T
Tink_Y 已提交
289
            metric = fluid.metrics.Precision()
P
pkpk 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

            # generate the preds and labels

            preds = [[0.1], [0.7], [0.8], [0.9], [0.2],
                     [0.2], [0.3], [0.5], [0.8], [0.6]]

            labels = [[0], [1], [1], [1], [1],
                      [0], [0], [0], [0], [0]]

            preds = np.array(preds)
            labels = np.array(labels)

            metric.update(preds=preds, labels=labels)
            numpy_precision = metric.eval()

P
pkpk 已提交
305
            print("expect precision: %.2f and got %.2f" % ( 3.0 / 5.0, numpy_precision))
306 307 308 309 310 311 312 313
    """

    def __init__(self, name=None):
        super(Precision, self).__init__(name)
        self.tp = 0  # true positive
        self.fp = 0  # false positive

    def update(self, preds, labels):
P
pkpk 已提交
314 315 316 317 318 319 320 321 322 323 324
        """
        Update the precision based on the current mini-batch prediction results .

        Args:
            preds(numpy.ndarray): prediction results of current mini-batch, 
                                the output of two-class sigmoid function. 
                                Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
            labels(numpy.ndarray): ground truth (labels) of current mini-batch, 
                                 the shape should keep the same as preds. 
                                 Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
325 326 327 328
        if not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray.")
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
329 330
        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")
G
Genieliu 已提交
331

332
        for i in range(sample_num):
333
            pred = preds[i]
334
            label = labels[i]
P
pkpk 已提交
335
            if pred == 1:
336 337 338 339 340 341
                if pred == label:
                    self.tp += 1
                else:
                    self.fp += 1

    def eval(self):
P
pkpk 已提交
342 343 344 345 346 347
        """
        Calculate the final precision.

        Returns:
            float: Results of the calculated Precision. Scalar output with float dtype.
        """
348 349 350 351 352 353 354 355 356 357
        ap = self.tp + self.fp
        return float(self.tp) / ap if ap != 0 else .0


class Recall(MetricBase):
    """
    Recall (also known as sensitivity) is the fraction of
    relevant instances that have been retrieved over the
    total amount of relevant instances

P
pkpk 已提交
358
    Refer to:
359 360
    https://en.wikipedia.org/wiki/Precision_and_recall

P
pkpk 已提交
361 362 363 364
    Noted that this class mangages the recall score only for binary classification task.

    Args:
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
P
pkpk 已提交
365

366 367 368
    Examples:
        .. code-block:: python

369
            import paddle.fluid as fluid
P
pkpk 已提交
370 371
            import numpy as np

T
Tink_Y 已提交
372
            metric = fluid.metrics.Recall()
P
pkpk 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385

            # generate the preds and labels

            preds = [[0.1], [0.7], [0.8], [0.9], [0.2],
                     [0.2], [0.3], [0.5], [0.8], [0.6]]

            labels = [[0], [1], [1], [1], [1],
                      [0], [0], [0], [0], [0]]

            preds = np.array(preds)
            labels = np.array(labels)

            metric.update(preds=preds, labels=labels)
P
pkpk 已提交
386
            numpy_recall = metric.eval()
P
pkpk 已提交
387

P
pkpk 已提交
388
            print("expect recall: %.2f and got %.2f" % ( 3.0 / 4.0, numpy_recall))
389 390 391 392 393 394 395 396
    """

    def __init__(self, name=None):
        super(Recall, self).__init__(name)
        self.tp = 0  # true positive
        self.fn = 0  # false negtive

    def update(self, preds, labels):
P
pkpk 已提交
397 398 399 400 401 402 403 404 405 406 407
        """
        Update the recall based on the current mini-batch prediction results.

        Args:
            preds(numpy.array): prediction results of current mini-batch, 
                              the output of two-class sigmoid function. 
                              Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
            labels(numpy.array): ground truth (labels) of current mini-batch, 
                               the shape should keep the same as preds. 
                               Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
408 409 410 411
        if not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray.")
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
P
pkpk 已提交
412 413 414
        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")

415
        for i in range(sample_num):
P
pkpk 已提交
416
            pred = preds[i]
417 418 419 420
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
P
pkpk 已提交
421
                else:
422 423 424
                    self.fn += 1

    def eval(self):
P
pkpk 已提交
425 426 427 428 429 430
        """
        Calculate the final recall.

        Returns:
            float: results of the calculated Recall. Scalar output with float dtype.
        """
431 432 433 434
        recall = self.tp + self.fn
        return float(self.tp) / recall if recall != 0 else .0


D
dzhwinter 已提交
435 436
class Accuracy(MetricBase):
    """
P
pkpk 已提交
437 438
    This interface is used to calculate the mean accuracy over multiple batches.
    Accuracy object has two state: value and weight. The definition of Accuracy is available at 
439
    https://en.wikipedia.org/wiki/Accuracy_and_precision
D
dzhwinter 已提交
440 441

    Args:
P
pkpk 已提交
442
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
D
dzhwinter 已提交
443

444 445 446
    Examples:
        .. code-block:: python

447
            import paddle.fluid as fluid
P
pkpk 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
            #suppose we have batch_size = 128
            batch_size=128
            accuracy_manager = fluid.metrics.Accuracy()

            #suppose the accuracy is 0.9 for the 1st batch
            batch1_acc = 0.9
            accuracy_manager.update(value = batch1_acc, weight = batch_size)
            print("expect accuracy: %.2f, get accuracy: %.2f" % (batch1_acc, accuracy_manager.eval()))

            #suppose the accuracy is 0.8 for the 2nd batch
            batch2_acc = 0.8

            accuracy_manager.update(value = batch2_acc, weight = batch_size)
            #the joint acc for batch1 and batch2 is (batch1_acc * batch_size + batch2_acc * batch_size) / batch_size / 2
            print("expect accuracy: %.2f, get accuracy: %.2f" % ((batch1_acc * batch_size + batch2_acc * batch_size) / batch_size / 2, accuracy_manager.eval()))

            #reset the accuracy_manager
            accuracy_manager.reset()
            #suppose the accuracy is 0.8 for the 3rd batch
            batch3_acc = 0.8
            accuracy_manager.update(value = batch3_acc, weight = batch_size)
            print("expect accuracy: %.2f, get accuracy: %.2f" % (batch3_acc, accuracy_manager.eval()))
D
dzhwinter 已提交
470 471 472 473 474 475 476 477
    """

    def __init__(self, name=None):
        super(Accuracy, self).__init__(name)
        self.value = .0
        self.weight = .0

    def update(self, value, weight):
478
        """
P
pkpk 已提交
479 480 481 482 483
        This function takes the minibatch states (value, weight) as input,
        to accumulate and update the corresponding status of the Accuracy object. The update method is as follows:

        .. math::
            \\\\ \\begin{array}{l}{\\text { self. value }+=\\text { value } * \\text { weight }} \\\\ {\\text { self. weight }+=\\text { weight }}\\end{array} \\\\
484 485 486

        Args:
            value(float|numpy.array): accuracy of one minibatch.
P
pkpk 已提交
487
            weight(int|float): minibatch size.
488
        """
D
dzhwinter 已提交
489 490 491 492 493
        if not _is_number_or_matrix_(value):
            raise ValueError(
                "The 'value' must be a number(int, float) or a numpy ndarray.")
        if not _is_number_(weight):
            raise ValueError("The 'weight' must be a number(int, float).")
P
pkpk 已提交
494 495
        if _is_number_(weight) and weight < 0:
            raise ValueError("The 'weight' can not be negative")
D
dzhwinter 已提交
496 497 498 499
        self.value += value * weight
        self.weight += weight

    def eval(self):
P
pkpk 已提交
500
        """
P
pkpk 已提交
501 502 503 504 505
        This function returns the mean accuracy (float or numpy.array) for all accumulated minibatches.

        Returns: 
            float or numpy.array: mean accuracy for all accumulated minibatches.

P
pkpk 已提交
506
        """
D
dzhwinter 已提交
507
        if self.weight == 0:
508 509
            raise ValueError("There is no data in Accuracy Metrics. \
                Please check layers.accuracy output has added to Accuracy.")
D
dzhwinter 已提交
510 511 512
        return self.value / self.weight


513
class ChunkEvaluator(MetricBase):
D
dzhwinter 已提交
514 515 516 517
    """
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
    numbers.
P
pkpk 已提交
518 519
    ChunkEvaluator has three states: num_infer_chunks, num_label_chunks and num_correct_chunks, 
    which correspond to the number of chunks, the number of labeled chunks, and the number of correctly identified chunks.
H
haowang101779990 已提交
520
    For some basics of chunking, please refer to 
P
pkpk 已提交
521
    `Chunking with Support Vector Machines <https://www.aclweb.org/anthology/N01-1025>`_ .
522 523 524
    ChunkEvalEvaluator computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.

P
pkpk 已提交
525 526 527
    Args:
       name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.

528 529 530
    Examples:
        .. code-block:: python

531
            import paddle.fluid as fluid
P
pkpk 已提交
532
            # init the chunck-level evaluation manager
533
            metric = fluid.metrics.ChunkEvaluator()
P
pkpk 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

            # suppose the model predict 10 chuncks, while 8 ones are correct and the ground truth has 9 chuncks.
            num_infer_chunks = 10
            num_label_chunks = 9 
            num_correct_chunks = 8

            metric.update(num_infer_chunks, num_label_chunks, num_correct_chunks)
            numpy_precision, numpy_recall, numpy_f1 = metric.eval()

            print("precision: %.2f, recall: %.2f, f1: %.2f" % (numpy_precision, numpy_recall, numpy_f1))

            # the next batch, predicting 3 prefectly correct chuncks.
            num_infer_chunks = 3
            num_label_chunks = 3
            num_correct_chunks = 3

            metric.update(num_infer_chunks, num_label_chunks, num_correct_chunks)
            numpy_precision, numpy_recall, numpy_f1 = metric.eval()

            print("precision: %.2f, recall: %.2f, f1: %.2f" % (numpy_precision, numpy_recall, numpy_f1))

D
dzhwinter 已提交
555 556 557
    """

    def __init__(self, name=None):
T
update  
typhoonzero 已提交
558
        super(ChunkEvaluator, self).__init__(name)
D
dzhwinter 已提交
559 560 561 562 563
        self.num_infer_chunks = 0
        self.num_label_chunks = 0
        self.num_correct_chunks = 0

    def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks):
564
        """
P
pkpk 已提交
565 566 567 568 569
        This function takes (num_infer_chunks, num_label_chunks, num_correct_chunks) as input,
        to accumulate and update the corresponding status of the ChunkEvaluator object. The update method is as follows:
        
        .. math:: 
                   \\\\ \\begin{array}{l}{\\text { self. num_infer_chunks }+=\\text { num_infer_chunks }} \\\\ {\\text { self. num_Label_chunks }+=\\text { num_label_chunks }} \\\\ {\\text { self. num_correct_chunks }+=\\text { num_correct_chunks }}\\end{array} \\\\
H
haowang101779990 已提交
570

571 572 573 574 575 576
        Args:
            num_infer_chunks(int|numpy.array): The number of chunks in Inference on the given minibatch.
            num_label_chunks(int|numpy.array): The number of chunks in Label on the given mini-batch.
            num_correct_chunks(int|float|numpy.array): The number of chunks both in Inference and Label on the
                                                  given mini-batch.
        """
D
dzhwinter 已提交
577 578
        if not _is_number_or_matrix_(num_infer_chunks):
            raise ValueError(
579
                "The 'num_infer_chunks' must be a number(int) or a numpy ndarray."
D
dzhwinter 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593
            )
        if not _is_number_or_matrix_(num_label_chunks):
            raise ValueError(
                "The 'num_label_chunks' must be a number(int, float) or a numpy ndarray."
            )
        if not _is_number_or_matrix_(num_correct_chunks):
            raise ValueError(
                "The 'num_correct_chunks' must be a number(int, float) or a numpy ndarray."
            )
        self.num_infer_chunks += num_infer_chunks
        self.num_label_chunks += num_label_chunks
        self.num_correct_chunks += num_correct_chunks

    def eval(self):
P
pkpk 已提交
594 595 596 597 598 599 600
        """
        This function returns the mean precision, recall and f1 score for all accumulated minibatches.

        Returns: 
            float: mean precision, recall and f1 score.

        """
D
dzhwinter 已提交
601 602 603 604 605 606 607 608 609 610 611 612
        precision = float(
            self.num_correct_chunks
        ) / self.num_infer_chunks if self.num_infer_chunks else 0
        recall = float(self.num_correct_chunks
                       ) / self.num_label_chunks if self.num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if self.num_correct_chunks else 0
        return precision, recall, f1_score


class EditDistance(MetricBase):
    """
P
pkpk 已提交
613 614 615 616 617
    This API is for the management of edit distances.
    Editing distance is a method to quantify the degree of dissimilarity 
    between two strings, such as words, by calculating the minimum editing 
    operand (add, delete or replace) required to convert one string into another. 
    Refer to https://en.wikipedia.org/wiki/Edit_distance.
D
dzhwinter 已提交
618 619

    Args:
P
pkpk 已提交
620
        name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
D
dzhwinter 已提交
621

622 623 624
    Examples:
        .. code-block:: python

625
            import paddle.fluid as fluid
P
pkpk 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
            import numpy as np

            # suppose that batch_size is 128
            batch_size = 128

            # init the edit distance manager
            distance_evaluator = fluid.metrics.EditDistance("EditDistance")

            # generate the edit distance across 128 sequence pairs, the max distance is 10 here
            edit_distances_batch0 = np.random.randint(low = 0, high = 10, size = (batch_size, 1))
            seq_num_batch0 = batch_size

            distance_evaluator.update(edit_distances_batch0, seq_num_batch0)
            avg_distance, wrong_instance_ratio = distance_evaluator.eval()
            print("the average edit distance for batch0 is %.2f and the wrong instance ratio is %.2f " % (avg_distance, wrong_instance_ratio))
D
dzhwinter 已提交
641

P
pkpk 已提交
642 643
            edit_distances_batch1 = np.random.randint(low = 0, high = 10, size = (batch_size, 1))
            seq_num_batch1 = batch_size
T
Tink_Y 已提交
644

P
pkpk 已提交
645 646 647 648 649 650 651 652 653 654 655 656
            distance_evaluator.update(edit_distances_batch1, seq_num_batch1)
            avg_distance, wrong_instance_ratio = distance_evaluator.eval()
            print("the average edit distance for batch0 and batch1 is %.2f and the wrong instance ratio is %.2f " % (avg_distance, wrong_instance_ratio))

            distance_evaluator.reset()

            edit_distances_batch2 = np.random.randint(low = 0, high = 10, size = (batch_size, 1))
            seq_num_batch2 = batch_size

            distance_evaluator.update(edit_distances_batch2, seq_num_batch2)
            avg_distance, wrong_instance_ratio = distance_evaluator.eval()
            print("the average edit distance for batch2 is %.2f and the wrong instance ratio is %.2f " % (avg_distance, wrong_instance_ratio))
D
dzhwinter 已提交
657 658 659 660 661 662 663 664 665 666

    """

    def __init__(self, name):
        super(EditDistance, self).__init__(name)
        self.total_distance = .0
        self.seq_num = 0
        self.instance_error = 0

    def update(self, distances, seq_num):
P
pkpk 已提交
667 668 669 670
        """
        Update the overall edit distance

        Args:
P
pkpk 已提交
671 672
            distances(numpy.array): a (batch_size, 1) numpy.array, each element represents the edit distance between two sequences.
            seq_num(int|float): standing for the number of sequence pairs.
P
pkpk 已提交
673
        """
D
dzhwinter 已提交
674 675 676 677 678 679 680 681 682 683
        if not _is_numpy_(distances):
            raise ValueError("The 'distances' must be a numpy ndarray.")
        if not _is_number_(seq_num):
            raise ValueError("The 'seq_num' must be a number(int, float).")
        seq_right_count = np.sum(distances == 0)
        total_distance = np.sum(distances)
        self.seq_num += seq_num
        self.instance_error += seq_num - seq_right_count
        self.total_distance += total_distance

Q
qiaolongfei 已提交
684
    def eval(self):
P
pkpk 已提交
685 686 687 688 689
        """
        Return two floats:
        avg_distance: the average distance for all sequence pairs updated using the update function.
        avg_instance_error: the ratio of sequence pairs whose edit distance is not zero.
        """
D
dzhwinter 已提交
690 691 692 693 694
        if self.seq_num == 0:
            raise ValueError(
                "There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance."
            )
        avg_distance = self.total_distance / self.seq_num
S
sneaxiy 已提交
695
        avg_instance_error = self.instance_error / float(self.seq_num)
D
dzhwinter 已提交
696 697 698 699 700
        return avg_distance, avg_instance_error


class Auc(MetricBase):
    """
P
pkpk 已提交
701
    The auc metric is for binary classification.
P
pkpk 已提交
702
    Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
P
pkpk 已提交
703
    Please notice that the auc metric is implemented with python, which may be a little bit slow.
D
dzhwinter 已提交
704 705 706
    If you concern the speed, please use the fluid.layers.auc instead.

    The `auc` function creates four local variables, `true_positives`,
707 708 709 710 711 712
    `true_negatives`, `false_positives` and `false_negatives` that are used to
    compute the AUC. To discretize the AUC curve, a linearly spaced set of
    thresholds is used to compute pairs of recall and precision values. The area
    under the ROC-curve is therefore computed using the height of the recall
    values by the false positive rate, while the area under the PR-curve is the
    computed using the height of the precision values by the recall.
D
dzhwinter 已提交
713 714

    Args:
P
pkpk 已提交
715 716
        name (str, optional): Metric name. For details, please refer to :ref:`api_guide_Name`. Default is None.
        curve (str): Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve.
D
dzhwinter 已提交
717 718

    "NOTE: only implement the ROC curve type via Python now."
719 720 721 722

    Examples:
        .. code-block:: python

723
            import paddle.fluid as fluid
P
pkpk 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
            import numpy as np
            # init the auc metric
            auc_metric = fluid.metrics.Auc("ROC")

            # suppose that batch_size is 128
            batch_num = 100
            batch_size = 128

            for batch_id in range(batch_num):

                class0_preds = np.random.random(size = (batch_size, 1))
                class1_preds = 1 - class0_preds

                preds = np.concatenate((class0_preds, class1_preds), axis=1)

                labels = np.random.randint(2, size = (batch_size, 1))
                auc_metric.update(preds = preds, labels = labels)

                # shall be some score closing to 0.5 as the preds are randomly assigned
                print("auc for iteration %d is %.2f" % (batch_id, auc_metric.eval()))
D
dzhwinter 已提交
744 745
    """

T
tangwei12 已提交
746
    def __init__(self, name, curve='ROC', num_thresholds=4095):
Q
fix auc  
qiaolongfei 已提交
747
        super(Auc, self).__init__(name=name)
D
dzhwinter 已提交
748 749
        self._curve = curve
        self._num_thresholds = num_thresholds
T
tangwei12 已提交
750 751 752 753

        _num_pred_buckets = num_thresholds + 1
        self._stat_pos = [0] * _num_pred_buckets
        self._stat_neg = [0] * _num_pred_buckets
D
dzhwinter 已提交
754

Q
qiaolongfei 已提交
755
    def update(self, preds, labels):
P
pkpk 已提交
756
        """
P
pkpk 已提交
757
        Update the auc curve with the given predictions and labels.
P
pkpk 已提交
758 759

        Args:
P
pkpk 已提交
760 761
             preds (numpy.array): an numpy array in the shape of (batch_size, 2), preds[i][j] denotes the probability of classifying the instance i into the class j.
             labels (numpy.array): an numpy array in the shape of (batch_size, 1), labels[i] is either o or 1, representing the label of the instance i.
P
pkpk 已提交
762
        """
D
dzhwinter 已提交
763 764
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
Q
qiaolongfei 已提交
765
        if not _is_numpy_(preds):
D
dzhwinter 已提交
766 767
            raise ValueError("The 'predictions' must be a numpy ndarray.")

T
tangwei12 已提交
768 769 770 771 772 773 774 775 776 777 778 779
        for i, lbl in enumerate(labels):
            value = preds[i, 1]
            bin_idx = int(value * self._num_thresholds)
            assert bin_idx <= self._num_thresholds
            if lbl:
                self._stat_pos[bin_idx] += 1.0
            else:
                self._stat_neg[bin_idx] += 1.0

    @staticmethod
    def trapezoid_area(x1, x2, y1, y2):
        return abs(x1 - x2) * (y1 + y2) / 2.0
D
dzhwinter 已提交
780 781

    def eval(self):
P
pkpk 已提交
782 783
        """
        Return the area (a float score) under auc curve
P
pkpk 已提交
784 785 786

        Return:
            float: the area under auc curve
P
pkpk 已提交
787
        """
T
tangwei12 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
        tot_pos = 0.0
        tot_neg = 0.0
        auc = 0.0

        idx = self._num_thresholds
        while idx >= 0:
            tot_pos_prev = tot_pos
            tot_neg_prev = tot_neg
            tot_pos += self._stat_pos[idx]
            tot_neg += self._stat_neg[idx]
            auc += self.trapezoid_area(tot_neg, tot_neg_prev, tot_pos,
                                       tot_pos_prev)
            idx -= 1

        return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0
803 804 805 806 807 808 809


class DetectionMAP(object):
    """
    Calculate the detection mean average precision (mAP).

    The general steps are as follows:
H
haowang101779990 已提交
810

811
    1. calculate the true positive and false positive according to the input
H
haowang101779990 已提交
812
       of detection and labels.
813
    2. calculate mAP value, support two versions: '11 point' and 'integral'.
814 815
       11point: the 11-point interpolated average precision.
       integral: the natural integral of the precision-recall curve.
816 817

    Please get more information from the following articles:
H
haowang101779990 已提交
818

819
      https://sanchom.wordpress.com/tag/average-precision/
H
haowang101779990 已提交
820

821 822 823
      https://arxiv.org/abs/1512.02325

    Args:
824
        input (Variable): LoDTensor, The detection results, which is a LoDTensor with shape
825
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
826 827 828 829
            The data type is float32 or float64.
        gt_label (Variable): LoDTensor, The ground truth label index, which is a LoDTensor
            with shape [N, 1].The data type is float32 or float64.
        gt_box (Variable): LoDTensor, The ground truth bounding box (bbox), which is a
830
            LoDTensor with shape [N, 4]. The layout is [xmin, ymin, xmax, ymax].
831 832
            The data type is float32 or float64.
        gt_difficult (Variable|None): LoDTensor, Whether this ground truth is a difficult
833
            bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
834 835
            it means all the ground truth labels are not difficult bbox.The
            data type is int.
836 837 838
        class_num (int): The class number.
        background_label (int): The index of background label, the background
            label will be ignored. If set to -1, then all categories will be
翟飞跃 已提交
839
            considered, 0 by default.
840
        overlap_threshold (float): The threshold for deciding true/false
翟飞跃 已提交
841
            positive, 0.5 by default.
842
        evaluate_difficult (bool): Whether to consider difficult ground truth
翟飞跃 已提交
843
            for evaluation, True by default. This argument does not work when
844
            gt_difficult is None.
845
        ap_version (str): The average precision calculation ways, it must be
846 847 848 849 850 851
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.

    Examples:
        .. code-block:: python

852
            import paddle.fluid as fluid
853

854
            batch_size = None # can be any size
P
pkpk 已提交
855 856 857
            image_boxs_num = 10
            bounding_bboxes_num = 21

858 859
            pb = fluid.data(name='prior_box', shape=[image_boxs_num, 4],
                       dtype='float32')
P
pkpk 已提交
860

861 862
            pbv = fluid.data(name='prior_box_var', shape=[image_boxs_num, 4],
                         dtype='float32')
P
pkpk 已提交
863

864 865
            loc = fluid.data(name='target_box', shape=[batch_size, bounding_bboxes_num, 4],
                        dtype='float32')
P
pkpk 已提交
866

867 868
            scores = fluid.data(name='scores', shape=[batch_size, bounding_bboxes_num, image_boxs_num],
                            dtype='float32')
P
pkpk 已提交
869 870 871 872

            nmsed_outs = fluid.layers.detection_output(scores=scores,
                loc=loc, prior_box=pb, prior_box_var=pbv)

873 874 875
            gt_box = fluid.data(name="gt_box", shape=[batch_size, 4], dtype="float32")
            gt_label = fluid.data(name="gt_label", shape=[batch_size, 1], dtype="float32")
            difficult = fluid.data(name="difficult", shape=[batch_size, 1], dtype="float32")
P
pkpk 已提交
876 877 878 879 880

            exe = fluid.Executor(fluid.CUDAPlace(0))
            map_evaluator = fluid.metrics.DetectionMAP(nmsed_outs, gt_label, gt_box, difficult, class_num = 3)

            cur_map, accum_map = map_evaluator.get_map_var()
H
haowang101779990 已提交
881

882

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
                 gt_difficult=None,
                 class_num=None,
                 background_label=0,
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):

        self.helper = LayerHelper('map_eval')
        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
        if gt_difficult:
            gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
            label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)
        else:
            label = layers.concat([gt_label, gt_box], axis=1)

        # calculate mean average precision (mAP) of current mini-batch
905
        map = detection.detection_map(
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
            input,
            label,
            class_num,
            background_label,
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            ap_version=ap_version)

        states = []
        states.append(
            self._create_state(
                dtype='int32', shape=None, suffix='accum_pos_count'))
        states.append(
            self._create_state(
                dtype='float32', shape=None, suffix='accum_true_pos'))
        states.append(
            self._create_state(
                dtype='float32', shape=None, suffix='accum_false_pos'))
        var = self._create_state(dtype='int32', shape=[1], suffix='has_state')
        self.helper.set_variable_initializer(
            var, initializer=Constant(value=int(0)))
        self.has_state = var

        # calculate accumulative mAP
930
        accum_map = detection.detection_map(
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
            input,
            label,
            class_num,
            background_label,
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=states,
            out_states=states,
            ap_version=ap_version)

        layers.fill_constant(
            shape=self.has_state.shape,
            value=1,
            dtype=self.has_state.dtype,
            out=self.has_state)

        self.cur_map = map
        self.accum_map = accum_map

    def _create_state(self, suffix, dtype, shape):
        """
        Create state variable.
        Args:
            suffix(str): the state suffix.
            dtype(str|core.VarDesc.VarType): the state data type
            shape(tuple|list): the shape of state
        Returns: State variable
        """
        state = self.helper.create_variable(
            name="_".join([unique_name.generate(self.helper.name), suffix]),
            persistable=True,
            dtype=dtype,
            shape=shape)
        return state

    def get_map_var(self):
        """
        Returns: mAP variable of current mini-batch and
            accumulative mAP variable cross mini-batches.
        """
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        """
D
Dang Qingqing 已提交
976
        Reset metric states at the begin of each pass/user specified batch.
977
        Args:
D
Dang Qingqing 已提交
978
            executor(Executor): a executor for executing
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
                the reset_program.
            reset_program(Program|None): a single Program for reset process.
                If None, will create a Program.
        """

        def _clone_var_(block, var):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
                persistable=var.persistable)

        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
            layers.fill_constant(
                shape=var.shape, value=0, dtype=var.dtype, out=var)
        executor.run(reset_program)