sequence_reverse_op.h 5.3 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <memory>
S
sneaxiy 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

class SequenceReverseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist");

    auto x_dim = ctx->GetInputDim("X");
    PADDLE_ENFORCE_GE(x_dim.size(), 2,
                      "Rank of Input(X) must be not less than 2.");

    ctx->SetOutputDim("Y", x_dim);
    ctx->ShareLoD("X", "Y");
  }
};

class SequenceReverseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input LoDTensor of sequence_reverse op.");
    AddOutput("Y", "The output LoDTensor of sequence_reverse op.");
    AddComment(R"DOC(
SequenceReverse Operator.

Reverse each sequence in input X along dim 0.

Assuming X is a LoDTensor with dims [5, 4] and lod [[0, 2, 5]], where:

X.data() = [
  [1, 2, 3, 4],
  [5, 6, 7, 8], # the 0-th sequence with length 2
  [9, 10, 11, 12],
  [13, 14, 15, 16],
  [17, 18, 19, 20] # the 1-st sequence with length 3
]

The output Y would be a LoDTensor sharing the same dims and lod with input X,
and:

Y.data() = [
  [5, 6, 7, 8],
  [1, 2, 3, 4], # the reversed 0-th sequence with length 2
  [17, 18, 19, 20],
  [13, 14, 15, 16],
  [9, 10, 11, 12] # the reversed 1-st sequence with length 3
]

This Operator is useful to build a reverse dynamic RNN network.
S
sneaxiy 已提交
74 75

This Operator only supports one-level lod currently.
S
sneaxiy 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    )DOC");
  }
};

template <typename T>
struct SequenceReverseFunctor {
  SequenceReverseFunctor(const T *x, T *y, const size_t *lod, size_t lod_count,
                         size_t row_numel)
      : x_(x), y_(y), lod_(lod), lod_count_(lod_count), row_numel_(row_numel) {}

  HOSTDEVICE void operator()(size_t idx_x) const {
    auto row_idx_x = idx_x / row_numel_;
    auto lod_idx = math::UpperBound(lod_, lod_count_, row_idx_x);
    auto row_idx_y = lod_[lod_idx - 1] + (lod_[lod_idx] - 1 - row_idx_x);
    auto idx_y = row_idx_y * row_numel_ + idx_x % row_numel_;
    y_[idx_y] = x_[idx_x];
  }

  const T *x_;
  T *y_;
  const size_t *lod_;
  size_t lod_count_;
  size_t row_numel_;
};

template <typename DeviceContext, typename T>
class SequenceReverseOpKernel : public framework::OpKernel<T> {
  using LoDTensor = framework::LoDTensor;

 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &x = *ctx.Input<LoDTensor>("X");
    auto *y = ctx.Output<LoDTensor>("Y");

110 111 112
    PADDLE_ENFORCE_EQ(x.lod().empty(), false,
                      "Input(X) Tensor of SequenceReverseOp does not contain "
                      "LoD information.");
S
sneaxiy 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    PADDLE_ENFORCE_EQ(x.lod().size(), 1,
                      "SequenceReverse Op only support one level lod.");

    const size_t *lod;
    size_t lod_count = x.lod()[0].size();

#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(ctx.GetPlace())) {
      lod = x.lod()[0].CUDAData(ctx.GetPlace());
    } else {
#endif
      lod = x.lod()[0].data();
#ifdef PADDLE_WITH_CUDA
    }
#endif

    size_t limit = static_cast<size_t>(x.numel());
    size_t row_numel = static_cast<size_t>(limit / x.dims()[0]);
    auto *x_data = x.data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());

    PADDLE_ENFORCE_NE(x_data, y_data,
                      "SequenceReverse Op does not support in-place operation");

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    if (platform::is_cpu_place(ctx.GetPlace())) {
      for (size_t idx = 0; idx < lod_count - 1; idx++) {
        auto start_pos = lod[idx];
        auto end_pos = lod[idx + 1];
        for (auto pos = start_pos; pos < end_pos; pos++) {
          auto cur_pos = end_pos - pos - 1 + start_pos;
          std::memcpy(y_data + pos * row_numel, x_data + cur_pos * row_numel,
                      row_numel * sizeof(T));
        }
      }
    } else {
      auto &dev_ctx = ctx.template device_context<DeviceContext>();

      SequenceReverseFunctor<T> functor(x_data, y_data, lod, lod_count,
                                        row_numel);
      platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
      for_range(functor);
    }
S
sneaxiy 已提交
155 156 157
  }
};

H
hong 已提交
158 159
template <typename T>
class SequenceReverseGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
160
 public:
H
hong 已提交
161
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
162 163

 protected:
164
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
165
    op->SetType("sequence_reverse");
H
hong 已提交
166 167 168
    op->SetInput("X", this->OutputGrad("Y"));
    op->SetOutput("Y", this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
169 170 171 172 173
  }
};

}  // namespace operators
}  // namespace paddle