conv_compute.cc 5.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

24
void ConvCompute::PrepareForRun() {
T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  auto& ctx = this->ctx_->template As<ARMContext>();

  int win = x_dims[3];  // nchw
  int hin = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int ow = o_dims[3];
  int oh = o_dims[2];
  int oc = o_dims[1];
  int kh = w_dims[2];  // oihw
  int kw = w_dims[3];
  int pad = param.paddings[0];
  int stride = param.strides[0];

  const auto* i_data = param.x->data<float>();
  const auto* w_data = param.filter->data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  auto* o_data = param.output->mutable_data<float>();

  bool kps_equal = (param.paddings[0] == param.paddings[1]) &&
                   (param.strides[0] == param.strides[1]) && (kw == kh);
  bool no_dilation = (param.dilations[0] == 1) && (param.dilations[1] == 1);
  bool flag_dw_3x3 =
      (kw == 3 && (pad == 0 || pad == 1) && (stride == 1 || stride == 2));
  bool flag_dw_5x5 =
      (kw == 5 && stride == 1) || (kw == 5 && stride == 2 && pad == 2);
  bool flag_dw = flag_dw_3x3 || flag_dw_5x5;

  // select conv impl
  if (param.groups == ic && ic == oc && kps_equal && no_dilation && flag_dw) {
    // dw conv impl
T
tensor-tang 已提交
61
    impl_ = new lite::arm::math::DepthwiseConv<PRECISION(kFloat)>;
62
    VLOG(3) << "invoking dw conv";
T
tensor-tang 已提交
63 64 65 66
  } else if (param.groups == 1 && kw == 3 && stride == 1 && kps_equal &&
             no_dilation) {
    if (ic >= 32 && oc >= 32 && oh > 16 && ow > 16) {
      // winograd conv impl
67
      impl_ = new lite::arm::math::WinogradConv<PRECISION(kFloat)>;
68
      VLOG(3) << "invoking winograd conv";
T
tensor-tang 已提交
69 70 71
    } else {
      // direct conv impl
      impl_ = new lite::arm::math::DirectConv<PRECISION(kFloat)>;
72
      VLOG(3) << "invoking direct conv";
T
tensor-tang 已提交
73 74 75 76 77
    }
  } else if (param.groups == 1 && kw == 3 && stride == 2 && kps_equal &&
             no_dilation) {
    // direct conv impl
    impl_ = new lite::arm::math::DirectConv<PRECISION(kFloat)>;
78
    VLOG(3) << "invoking direct conv";
T
tensor-tang 已提交
79
  } else {
T
tensor-tang 已提交
80
    impl_ = new lite::arm::math::GemmLikeConv<PRECISION(kFloat)>;
81
    VLOG(3) << "invoking gemm like conv";
T
tensor-tang 已提交
82
  }
83 84
  CHECK(this->impl_->create(param, &ctx));
}
T
tensor-tang 已提交
85

86 87
void ConvCompute::Run() {
  auto& param = this->Param<param_t>();
T
tensor-tang 已提交
88 89 90 91 92 93 94
  CHECK(impl_);
  impl_->run(param);
  // if (this->act_ != nullptr) {
  //   this->act_->run(outputs, outputs, param.activation_param);
  // }
}

S
shixiaowei02 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
template <PrecisionType Ptype_out>
void ConvComputeInt8<Ptype_out>::PrepareForRun() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  impl_ = new lite::arm::math::GemmLikeConvInt8<Ptype_out>;
  CHECK(this->impl_->create(param, &ctx));
}

template <PrecisionType Ptype_out>
void ConvComputeInt8<Ptype_out>::Run() {
  auto& param = this->Param<param_t>();
  CHECK(impl_);
  impl_->run(param);
}

template class ConvComputeInt8<PRECISION(kInt8)>;
template class ConvComputeInt8<PRECISION(kFloat)>;
template class ConvComputeInt8<PRECISION(kInt32)>;
N
nhzlx 已提交
113

T
tensor-tang 已提交
114 115 116 117 118
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

T
tensor-tang 已提交
119 120 121
REGISTER_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW,
                     paddle::lite::kernels::arm::ConvCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
N
nhzlx 已提交
122
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
T
tensor-tang 已提交
123
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
Z
zhupengyang 已提交
124
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))})
T
tensor-tang 已提交
125 126 127
    .Finalize();

REGISTER_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW,
T
tensor-tang 已提交
128 129
                     paddle::lite::kernels::arm::ConvCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
N
nhzlx 已提交
130
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
T
tensor-tang 已提交
131
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
Z
zhupengyang 已提交
132
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))})
T
tensor-tang 已提交
133
    .Finalize();
N
nhzlx 已提交
134

S
shixiaowei02 已提交
135 136 137
REGISTER_LITE_KERNEL(
    conv2d, kARM, kInt8, kNCHW,
    paddle::lite::kernels::arm::ConvComputeInt8<PRECISION(kInt8)>, int8_out)
N
nhzlx 已提交
138 139 140 141 142 143 144 145
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .Finalize();

S
shixiaowei02 已提交
146 147 148
REGISTER_LITE_KERNEL(
    conv2d, kARM, kInt8, kNCHW,
    paddle::lite::kernels::arm::ConvComputeInt8<PRECISION(kFloat)>, fp32_out)
N
nhzlx 已提交
149 150 151 152 153
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("Filter",
               {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Output",
S
shixiaowei02 已提交
154
                {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))})
N
nhzlx 已提交
155
    .Finalize();