engine.cc 9.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31
void TensorRTEngine::Build(const DescType &paddle_model) {
Y
Yan Chunwei 已提交
32 33 34
  PADDLE_ENFORCE(false, "not implemented");
}

35 36
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
37
  freshDeviceId();
38
  const std::thread::id tid = std::this_thread::get_id();
N
nhzlx 已提交
39
  batch_size_ = batch_size;
40
  if (infer_context_.find(tid) == infer_context_.end()) {
41
    std::unique_lock<std::mutex> lock(mutex_);
42 43 44 45 46 47
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        "You should build engine first and then set the context.");
    infer_context_[tid].reset(infer_engine_->createExecutionContext());
  }
  infer_context_[tid]->enqueue(batch_size, buffers->data(), stream, nullptr);
N
nhzlx 已提交
48 49 50
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
51
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
52
  freshDeviceId();
53
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
61
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
62
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
63 64 65 66 67 68 69 70
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
    }
  }
71
#else
72
  if (enable_fp16)
73
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
74 75
                 "is at least 5."
                 "So, use FP32 to run.";
76
#endif
Z
Zhaolong Xing 已提交
77 78 79
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
80
    infer_builder_->setInt8Mode(true);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
      for (int i = 0; i < infer_network_->getNbInputs(); i++) {
        all_t.insert(infer_network_->getInput(i));
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
107 108 109
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
110 111
        }
      }
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
      std::unordered_set<std::string> all_out_t_name;
      for (int i = 0; i < infer_network_->getNbOutputs(); i++) {
        auto *temp = infer_network_->getOutput(i);
        temp->setDynamicRange(-1, 1);
        all_out_t_name.insert(temp->getName());
      }

      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
          if (std::find(all_out_t_name.begin(), all_out_t_name.end(),
                        temp_out->getName()) != all_out_t_name.end()) {
            layer->setPrecision(nvinfer1::DataType::kFLOAT);
            layer->setOutputType(j, nvinfer1::DataType::kFLOAT);
          }
        }
      }

131 132
#endif
    }
N
nhzlx 已提交
133
  }
Y
Yan Chunwei 已提交
134 135 136 137 138

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");
}

139
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
140
                                                nvinfer1::DataType dtype,
141
                                                const nvinfer1::Dims &dims) {
Y
Yan Chunwei 已提交
142 143 144 145
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
146
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
147
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
148
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
149
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
150
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
151
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
152 153 154
  return input;
}

155 156
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
Y
Yan Chunwei 已提交
157 158 159
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

160
  auto *output = layer->getOutput(offset);
161
  SetITensor(name, output);
Y
Yan Chunwei 已提交
162 163
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
164
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
165
  infer_network_->markOutput(*output);
166
  PADDLE_ENFORCE(output->isNetworkOutput());
167 168
  // output buffers' size can only be decided later, set zero here to mark this
  // and will reset later.
Y
Yan Chunwei 已提交
169 170 171
  buffer_sizes_[name] = 0;
}

N
nhzlx 已提交
172 173 174 175
bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

176
void TensorRTEngine::DeclareOutput(const std::string &name) {
L
Luo Tao 已提交
177 178 179
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

180
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
181 182
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
183
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
184
  infer_network_->markOutput(*output);
185 186
  // output buffers' size can only be decided later, set zero here to mark this
  // and will reset later.
L
Luo Tao 已提交
187 188 189
  buffer_sizes_[name] = 0;
}

190 191
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
192
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
193
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
194 195 196 197
                    name);
  itensor_map_[name] = tensor;
}

198
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
199
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
200 201 202
  return itensor_map_[name];
}

203 204 205 206
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

207 208 209 210
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
211 212
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
213 214
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
215 216
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
217 218 219 220 221 222 223 224 225 226 227
  PADDLE_ENFORCE_EQ(
      weight_map.count(name_with_suffix), 0,
      "During TRT Op converter: We set weight %s with the same name "
      "twice into the weight_map",
      name_with_suffix);
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
228 229 230

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
231
    // when the op is conv, scale's size should be w_dims[0]
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

250 251
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
252
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
253 254
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
255
  owned_plugin_.emplace_back(plugin);
256
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
257 258
}

N
nhzlx 已提交
259 260 261 262 263 264 265
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
266 267 268
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle