test_conv2d_transpose_layer.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest


class Conv2DTransposeTestCase(unittest.TestCase):
    def __init__(self,
                 methodName='runTest',
                 batch_size=4,
                 spartial_shape=(16, 16),
                 num_channels=6,
                 num_filters=8,
                 filter_size=3,
                 output_size=None,
L
LielinJiang 已提交
32
                 output_padding=0,
33 34 35 36 37 38 39 40 41 42 43 44 45 46
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=1,
                 no_bias=False,
                 data_format="NCHW",
                 dtype="float32"):
        super(Conv2DTransposeTestCase, self).__init__(methodName)
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_filters = num_filters
        self.spartial_shape = spartial_shape
        self.filter_size = filter_size
        self.output_size = output_size
L
LielinJiang 已提交
47
        self.output_padding = output_padding
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

        self.padding = padding
        self.stride = stride
        self.dilation = dilation
        self.groups = groups
        self.no_bias = no_bias
        self.data_format = data_format
        self.dtype = dtype

    def setUp(self):
        self.channel_last = self.data_format == "NHWC"
        if self.channel_last:
            input_shape = (self.batch_size, ) + self.spartial_shape + (
                self.num_channels, )
        else:
            input_shape = (self.batch_size, self.num_channels
                           ) + self.spartial_shape
        self.input = np.random.randn(*input_shape).astype(self.dtype)

        if isinstance(self.filter_size, int):
            filter_size = [self.filter_size] * 2
        else:
            filter_size = self.filter_size
        self.weight_shape = weight_shape = (self.num_channels, self.num_filters
                                            // self.groups) + tuple(filter_size)
        self.weight = np.random.uniform(
            -1, 1, size=weight_shape).astype(self.dtype)
        if not self.no_bias:
            self.bias = np.random.uniform(
                -1, 1, size=(self.num_filters, )).astype(self.dtype)
        else:
            self.bias = None

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1,self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                weight_attr = I.NumpyArrayInitializer(self.weight)
                if self.bias is None:
                    bias_attr = False
                else:
                    bias_attr = I.NumpyArrayInitializer(self.bias)
L
LielinJiang 已提交
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                y_var = fluid.layers.conv2d_transpose(
                    x_var,
                    self.num_filters,
                    filter_size=self.filter_size,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=weight_attr,
                    bias_attr=bias_attr,
                    data_format=self.data_format)
        feed_dict = {"input": self.input}
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def functional(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1,self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                w_var = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype)
                b_var = fluid.data(
                    "bias", (self.num_filters, ), dtype=self.dtype)
L
LielinJiang 已提交
125 126 127 128 129 130 131

                if self.output_padding != 0:
                    output_size = None
                else:
                    output_size = self.output_size

                y_var = F.conv_transpose2d(
132 133 134
                    x_var,
                    w_var,
                    None if self.no_bias else b_var,
L
LielinJiang 已提交
135
                    output_size=output_size,
136
                    padding=self.padding,
L
LielinJiang 已提交
137
                    output_padding=self.output_padding,
138 139 140 141 142 143 144 145 146 147 148 149 150 151
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format)
        feed_dict = {"input": self.input, "weight": self.weight}
        if self.bias is not None:
            feed_dict["bias"] = self.bias
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def paddle_nn_layer(self):
        x_var = dg.to_variable(self.input)
L
LielinJiang 已提交
152 153 154 155 156 157

        if self.output_padding != 0:
            output_size = None
        else:
            output_size = self.output_size

C
cnn 已提交
158
        conv = nn.Conv2DTranspose(
159 160 161 162
            self.num_channels,
            self.num_filters,
            self.filter_size,
            padding=self.padding,
L
LielinJiang 已提交
163
            output_padding=self.output_padding,
164 165 166
            stride=self.stride,
            dilation=self.dilation,
            groups=self.groups,
L
LielinJiang 已提交
167
            data_format=self.data_format)
168 169 170
        conv.weight.set_value(self.weight)
        if not self.no_bias:
            conv.bias.set_value(self.bias)
L
LielinJiang 已提交
171
        y_var = conv(x_var, output_size)
172 173 174 175 176
        y_np = y_var.numpy()
        return y_np

    def _test_equivalence(self, place):
        place = fluid.CPUPlace()
L
LielinJiang 已提交
177

178 179
        result1 = self.fluid_layer(place)
        result2 = self.functional(place)
L
LielinJiang 已提交
180

181 182
        with dg.guard(place):
            result3 = self.paddle_nn_layer()
L
LielinJiang 已提交
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)

        if fluid.core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            self._test_equivalence(place)


class Conv2DTransposeErrorTestCase(Conv2DTransposeTestCase):
    def runTest(self):
        place = fluid.CPUPlace()
        with dg.guard(place):
            with self.assertRaises(ValueError):
                self.paddle_nn_layer()


def add_cases(suite):
L
LielinJiang 已提交
205
    suite.addTest(Conv2DTransposeTestCase(methodName='runTest'))
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest', stride=[1, 2], no_bias=True, dilation=2))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest',
            filter_size=(3, 3),
            output_size=[20, 36],
            stride=[1, 2],
            dilation=2))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest', stride=2, dilation=(2, 1)))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest', padding="valid"))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest', filter_size=1, padding=(2, 3)))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest', padding=[1, 2, 2, 1]))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest', padding=[[0, 0], [0, 0], [1, 2], [2, 1]]))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest', data_format="NHWC"))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest',
            data_format="NHWC",
            padding=[[0, 0], [1, 1], [2, 2], [0, 0]]))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest', groups=2, padding="valid"))
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest',
            num_filters=6,
            num_channels=3,
            groups=3,
            padding="valid"))
L
LielinJiang 已提交
249 250 251 252 253 254 255 256 257 258 259 260
    suite.addTest(
        Conv2DTransposeTestCase(
            methodName='runTest',
            num_filters=6,
            num_channels=3,
            spartial_shape=(7, 7),
            filter_size=[5, 5],
            groups=1,
            padding=2,
            stride=2,
            output_size=[14, 14],
            output_padding=[1, 1], ))
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280


def add_error_cases(suite):
    suite.addTest(
        Conv2DTransposeErrorTestCase(
            methodName='runTest', num_channels=5, groups=2))
    suite.addTest(
        Conv2DTransposeErrorTestCase(
            methodName='runTest', output_size="not_valid"))


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    add_cases(suite)
    add_error_cases(suite)
    return suite


if __name__ == '__main__':
    unittest.main()