adamax_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adamax_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21 22 23 24
class AdamaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Y
Yu Yang 已提交
25
  void InferShape(framework::InferShapeContext *ctx) const override {
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    OP_INOUT_CHECK(ctx->HasInput("Param"), "Input", "Param", "Adamax");
    OP_INOUT_CHECK(ctx->HasInput("Grad"), "Input", "Grad", "Adamax");
    OP_INOUT_CHECK(ctx->HasInput("Moment"), "Input", "Moment", "Adamax");
    OP_INOUT_CHECK(ctx->HasInput("InfNorm"), "Input", "InfNorm", "Adamax");
    OP_INOUT_CHECK(ctx->HasInput("LearningRate"), "Input", "LearningRate",
                   "Adamax");
    OP_INOUT_CHECK(ctx->HasInput("Beta1Pow"), "Input", "Beta1Pow", "Adamax");
    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Param").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the received is %s",
            ctx->Inputs("Param").front(),
            ctx->GetInputsVarType("Param").front()));
    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Grad").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the received is %s",
            ctx->Inputs("Grad").front(),
            ctx->GetInputsVarType("Grad").front()));
47

48 49 50 51 52
    OP_INOUT_CHECK(ctx->HasOutput("ParamOut"), "Output", "ParamOut", "Adamax");
    OP_INOUT_CHECK(ctx->HasOutput("MomentOut"), "Output", "MomentOut",
                   "Adamax");
    OP_INOUT_CHECK(ctx->HasOutput("InfNormOut"), "Output", "InfNormOut",
                   "Adamax");
53 54

    auto lr_dims = ctx->GetInputDim("LearningRate");
55
    PADDLE_ENFORCE_NE(framework::product(lr_dims), 0,
56 57 58 59 60
                      platform::errors::InvalidArgument(
                          "Maybe the Input variable LearningRate has not "
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function."));
61
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
62 63
                      platform::errors::InvalidArgument(
                          "Learning rate should have 1 dimension"));
64 65
    auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
    PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
66 67
                      platform::errors::InvalidArgument(
                          "Beta1 power accumulator should have 1 dimension"));
68 69 70
    auto param_dims = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dims, ctx->GetInputDim("Grad"),
71 72
        platform::errors::InvalidArgument(
            "Param and Grad input of AdamaxOp should have same dimension"));
73 74
    PADDLE_ENFORCE_EQ(
        param_dims, ctx->GetInputDim("Moment"),
75 76
        platform::errors::InvalidArgument(
            "Param and Moment input of AdamaxOp should have same dimension"));
77 78
    PADDLE_ENFORCE_EQ(
        param_dims, ctx->GetInputDim("InfNorm"),
79 80
        platform::errors::InvalidArgument(
            "Param and InfNorm input of AdamaxOp should have same dimension"));
81 82 83 84 85

    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("MomentOut", param_dims);
    ctx->SetOutputDim("InfNormOut", param_dims);
  }
D
dzhwinter 已提交
86 87
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
88 89
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Param"), ctx.GetPlace());
D
dzhwinter 已提交
90
  }
91 92 93 94
};

class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
95
  void Make() override {
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment", "(Tensor) First moment");
    AddInput("InfNorm",
             "(Tensor) "
             "Input exponentially weighted infinity norm");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("MomentOut", "(Tensor) Output first moment");
    AddOutput("InfNormOut",
              "(Tensor) "
              "Output exponentially weighted infinity norm");

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "1st moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the weighted "
                   "infinity norm estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
    AddComment(R"DOC(
126
Adamax Optimizer.
127

128 129
We implement the Adamax optimizer from Section 7 of the Adam
paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
130 131 132 133
Adam algorithm based on the infinity norm.

Adamax updates:

134
$$
135 136 137 138
moment\_out = \beta_1 * moment + (1 - \beta_1) * grad \\
inf\_norm\_out = max(\beta_2 * inf\_norm + \epsilon, |grad|) \\
learning\_rate = \frac{learning\_rate}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_out}{inf\_norm\_out}
139
$$
140 141

The original paper does not have an epsilon attribute.
142 143
However, it is added here for numerical stability to prevent the
division by 0 error.
144 145 146 147 148 149 150 151 152 153

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adamax, ops::AdamaxOp, ops::AdamaxOpMaker);
Q
QI JUN 已提交
154 155 156
REGISTER_OP_CPU_KERNEL(
    adamax, ops::AdamaxOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamaxOpKernel<paddle::platform::CPUDeviceContext, double>);