adagrad_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adagrad_op.h"
16
#include <vector>
17

Q
QI JUN 已提交
18 19
#include <cmath>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
QI JUN 已提交
22

23 24 25
namespace paddle {
namespace operators {

D
dzhwinter 已提交
26
using Tensor = framework::Tensor;
27 28 29 30
class AdagradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Q
QI JUN 已提交
31
  void InferShape(framework::InferShapeContext* ctx) const override {
32 33 34 35 36 37 38 39
    OP_INOUT_CHECK(ctx->HasInput("Param"), "Input", "Param", "Adagrad");
    OP_INOUT_CHECK(ctx->HasInput("Grad"), "Input", "Grad", "Adagrad");
    OP_INOUT_CHECK(ctx->HasInput("Moment"), "Input", "Moment", "Adagrad");
    OP_INOUT_CHECK(ctx->HasInput("LearningRate"), "Input", "LearningRate",
                   "Adagrad");
    OP_INOUT_CHECK(ctx->HasOutput("ParamOut"), "Output", "ParamOut", "Adagrad");
    OP_INOUT_CHECK(ctx->HasOutput("MomentOut"), "Output", "MomentOut",
                   "Adagrad");
K
Kexin Zhao 已提交
40 41

    auto lr_dims = ctx->GetInputDim("LearningRate");
42
    PADDLE_ENFORCE_NE(framework::product(lr_dims), 0,
43 44 45 46 47
                      platform::errors::InvalidArgument(
                          "Maybe the Input variable LearningRate has not "
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function."));
48
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
49 50
                      platform::errors::InvalidArgument(
                          "LearningRate should have one element"));
K
Kexin Zhao 已提交
51
    auto param_dims = ctx->GetInputDim("Param");
52
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
53
        param_dims, ctx->GetInputDim("Grad"),
54 55
        platform::errors::InvalidArgument("Param and Grad input of AdagradOp "
                                          "should have the same dimension."));
56
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
57
        param_dims, ctx->GetInputDim("Moment"),
58 59
        platform::errors::InvalidArgument("Param and Moment input of AdagradOp "
                                          "should have the same dimension."));
60

K
Kexin Zhao 已提交
61 62
    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("MomentOut", param_dims);
63
  }
D
dzhwinter 已提交
64 65
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
66 67
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Param"), ctx.GetPlace());
D
dzhwinter 已提交
68
  }
69 70 71 72
};

class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
73
  void Make() override {
K
Kexin Zhao 已提交
74 75 76 77 78 79 80 81 82 83 84 85
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("Moment", "(Tensor) Second moment");
    AddInput("LearningRate", "(Tensor) Learning rate");

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("MomentOut", "(Tensor) Output second moment");

    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-6f);
86 87 88 89
    AddComment(R"DOC(

Adaptive Gradient Algorithm (Adagrad).

90 91
The update is done as follows:

92 93
$$moment\_out = moment + grad * grad \\
param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
94
$$
95 96

The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
97 98 99
does not have the epsilon attribute. It is added here in our implementation
as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
for numerical stability to avoid the division by zero error.
100 101 102 103

)DOC");
  }
};
Q
QI JUN 已提交
104 105 106 107 108 109 110 111

namespace {
size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
  return std::find(rows.begin(), rows.end(), value) - rows.begin();
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
112 113
struct SparseAdagradFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
114 115 116 117 118
                  const framework::SelectedRows& grad,
                  const framework::Tensor& learning_rate, T epsilon,
                  framework::Tensor* moment, framework::Tensor* param) {
    // 1. g_m.rows = set(g.rows)
    auto grad_width = grad.value().dims()[1];
T
wip  
typhoonzero 已提交
119 120 121 122
    math::scatter::MergeAdd<platform::CPUDeviceContext, T> merge_func;
    auto grad_merge = merge_func(context, grad);
    auto& merge_rows = grad_merge.rows();
    auto* grad_merge_data = grad_merge.mutable_value()->template data<T>();
Q
QI JUN 已提交
123 124

    // 2. m += g_m * g_m
S
sneaxiy 已提交
125 126
    auto grad_square =
        SquareSelectedRows<platform::CPUDeviceContext, T>(context, grad_merge);
Q
QI JUN 已提交
127

Q
QI JUN 已提交
128
    math::SelectedRowsAddToTensor<platform::CPUDeviceContext, T> functor;
T
wip  
typhoonzero 已提交
129
    functor(context, grad_square, moment);
Q
QI JUN 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    // 3. update parameter
    auto* lr = learning_rate.data<T>();
    auto* param_data = param->data<T>();
    auto* moment_data = moment->data<T>();

    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (int64_t j = 0; j < grad_width; j++) {
        param_data[merge_rows[i] * grad_width + j] -=
            lr[0] * grad_merge_data[i * grad_width + j] /
            (std::sqrt(moment_data[merge_rows[i] * grad_width + j]) + epsilon);
      }
    }
  }
};

Q
QI JUN 已提交
146 147
template struct SparseAdagradFunctor<platform::CPUDeviceContext, float>;
template struct SparseAdagradFunctor<platform::CPUDeviceContext, double>;
148 149 150 151 152
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
Q
QI JUN 已提交
153
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
154 155
    adagrad, ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, double>);