quantization_pass.py 82.8 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29

30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
32 33
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
34
]
W
WangZhen 已提交
35

36 37 38 39 40 41 42 43 44
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

45 46 47 48
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

49
_out_scale_op_list = [
50 51 52 53 54 55 56 57 58 59 60 61 62
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
63
    "layer_norm",
64 65 66 67 68 69 70
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
71
    "slice",
72 73
    "hard_swish",
    "hard_sigmoid",
74
    "conv2d_transpose",
75 76 77 78
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
79 80 81 82 83
    "flatten",
    "flatten2",
    "transpose",
    "pad2d",
    "reshape",
C
ceci3 已提交
84
    "layer_norm",
85 86
]

87 88 89
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
90
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
91
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
92
    "mul": [["X", "Y"], ["Out"]],
93
    "matmul": [["X", "Y"], ["Out"]],
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
110
    "transpose2": [["X"], ["Out"]],
111 112 113 114 115 116 117 118 119
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
120
    "prelu": [["X"], ["Out"]],
121 122
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
123 124
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
125
    "layer_norm": [["X"], ["Y"]],
126
    "sigmoid": [["X"], ["Out"]],
127 128
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
129 130
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
131
    "gru": [["Input", "Weight"], ["Hidden"]],
132
    "lstm": [["Input", "Weight"], ["Hidden"]],
133 134 135
    "pad2d": [["X"], ["Out"]],
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
136 137
}

138 139 140 141
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

_channelwise_quant_axis1_ops = ['conv2d_transpose', 'mul']

W
WangZhen 已提交
142

143
def _get_op_input_var_names(op):
144 145 146 147 148 149 150
    """
    Get the input var names of the op.
    Args:
        op(IrNode, Operator): the input op.
    Returns:
        input_var_names or None.
    """
151 152 153 154 155
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
156 157 158
    if op_name not in _op_real_in_out_name:
        return []

159 160 161 162 163 164 165 166 167 168
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


169 170 171 172 173 174
def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
175 176 177
    if op_name not in _op_real_in_out_name:
        return None

178 179 180 181 182 183 184 185 186
    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


187 188 189 190 191 192 193
def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
194 195 196
    if op_name not in _op_real_in_out_name:
        return []

197 198 199 200 201 202 203 204 205 206
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


207 208 209 210 211 212
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
213 214 215
    if op_name not in _op_real_in_out_name:
        return None

216 217 218 219 220 221 222 223 224 225
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


226 227 228 229
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
230
        'The scope cannot be set None.'
231
    assert place is not None, \
232
        'The place cannot be set None.'
233 234 235 236
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


237 238 239 240 241
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
242 243 244 245
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
246 247 248
    return is_input_all_not_persistable


249 250 251 252 253 254 255 256 257 258 259 260 261 262
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


263
class QuantizationTransformPass(object):
264
    """
265 266
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
267
    """
268
    _supported_quantizable_op_type = [
269
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
270
    ]
271

W
WangZhen 已提交
272
    def __init__(self,
273
                 scope=None,
274
                 place=None,
W
WangZhen 已提交
275 276 277 278
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
279
                 window_size=10000,
280
                 moving_rate=0.9,
281
                 skip_pattern=['skip_quant'],
282 283 284 285 286 287 288
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
289
        r"""
290
        Constructor.
291

W
WangZhen 已提交
292
        Args:
293
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
294 295
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
296 297 298
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
299
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
300
                the bias is not quantized.
301 302
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
303 304 305 306 307
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
308
            weight_quantize_type(str): quantization type for weights,
309 310 311
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
312 313
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
314
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
315
                will be presented in the name scope of an op. When the skip pattern is
316
                detected in an op's name scope, the corresponding op will not be quantized. 
317
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
318 319
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
347 348
                Default is None.

349

W
WangZhen 已提交
350 351
        Examples:
        .. code-block:: python
352 353 354 355
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
356
            from paddle.fluid.contrib.slim.graph import IrGraph
357 358
            from paddle.fluid import core

359
            graph = IrGraph(core.Graph(program.desc), for_test=False)
360
            place = fluid.CPUPlace()
361
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
362
            place)
363
            transform_pass.apply(graph)
W
WangZhen 已提交
364
        """
365
        self._scope = scope
366
        self._place = _get_paddle_place(place)
367 368
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
369
        self._skip_pattern = skip_pattern
370 371 372 373 374 375
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
376 377 378 379
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
380 381
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
382 383
        if activation_quantize_type not in quant_type:
            raise ValueError(
384 385 386
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
387 388
        if weight_quantize_type not in quant_type:
            raise ValueError(
389
                "Unknown weight_quantize_type: '%s'. It can only be "
390 391
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
392

393 394 395
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
396
        self._moving_rate = moving_rate
W
WangZhen 已提交
397

398 399
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
400
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
401
                op + " is not supported for quantization."
402 403
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
404
        ]
405 406
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
407

408 409 410
        self.create_var_map = {}
        self.create_op_map = {}

411
    def apply(self, graph):
412 413 414 415 416 417 418
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
419 420
        Returns:
            None
421
        """
W
WangZhen 已提交
422
        assert isinstance(graph,
423 424
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
425 426
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
427
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
428
        processed_vars = []
W
WangZhen 已提交
429

430
        def _quant_preprocess(op_node):
431 432 433
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
434 435
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
436 437
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
438 439
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
440

441
            if user_skipped:
442 443
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
444
        def _transform_forward(graph, op):
445
            op.op()._set_attr("quantization_type", "qat_with_weight")
446 447
            inputs = op.inputs
            for var_node in inputs:
448 449
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
450 451 452
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
453 454 455
                    name = var_node.name()
                    if name in processed_vars:
                        continue
456 457
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
487
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
488
                        else self._activation_bits
489 490
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
491 492 493 494 495 496 497 498
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
499 500
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
501
                            graph, var_node, name, quant_bits, quant_type)
502 503
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
504
                    dequantized_vars[name] = dequant_var_node
505
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
506 507 508

        def _transform_backward(graph, op):
            for var_node in op.inputs:
509 510
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
511 512
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
513
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
514

515
        if not self._is_test:
W
WangZhen 已提交
516
            self._create_global_step(graph)
517
        ops = graph.all_op_nodes()
518 519 520 521 522 523
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
524 525
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
526 527
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
528
        for op in ops:
529
            if op.name() in self._quantizable_ops:
530
                if not self._is_skip_quant(graph, op):
531
                    _transform_forward(graph, op)
W
WangZhen 已提交
532 533
        # The loop for renaming the inputs of backward op.
        for op in ops:
534
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
535
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
536
        graph.resolve_hazard()
537
        return graph
W
WangZhen 已提交
538

W
WangZhen 已提交
539
    def _create_global_step(self, graph):
540 541
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
542
            counter_name = cpt.to_text('@STEP_COUNTER@')
543
            for node in graph.all_var_nodes():
W
WangZhen 已提交
544
                if node.name() == counter_name:
545 546
                    self._global_step = node
            if self._global_step is None:
547
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
548 549 550 551
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
552 553 554 555 556 557
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
558 559
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
560
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
561 562
                increment_op = graph.create_op_node(
                    op_type='increment',
563 564 565 566 567
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
568 569
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
570 571 572
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
573

574
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
575 576 577 578
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
579 580
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
581
        elif quant_type == 'range_abs_max':
582
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
583
                                                       quant_bits)
584
        elif quant_type == 'moving_average_abs_max':
585 586
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
587

588
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
589 590 591 592 593 594
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
595
            name=self._quantized_var_name(name),
596 597 598
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
599
        scale_var_node = graph.create_persistable_node(
600
            name=self._quantized_scale_name(name),
601
            var_type=var_node.type(),
602
            shape=[1],
603
            var_dtype=var_node.dtype())
604 605 606 607 608 609 610 611
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
612 613
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
614 615 616 617
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
618 619 620
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
621 622 623
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
624 625
        return quant_var_node, scale_var_node

626
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
627 628 629 630 631 632
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
633
            name=self._quantized_var_name(name),
634 635 636
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
637

638
        scale_in_node = graph.create_persistable_node(
639
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
640 641
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
642
            var_dtype=var_node.dtype())
643 644
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
645 646 647 648 649 650
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
651 652 653 654 655

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

656
        if not self._is_test:
W
WangZhen 已提交
657
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
658
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
659 660
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
661
                shape=[self._window_size],
662
                var_dtype=var_node.dtype())
663 664
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
665 666 667 668 669 670 671
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

672
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
673 674
            outputs['OutScales'] = scales_node
        attrs = {
675
            'window_size': self._window_size,
W
WangZhen 已提交
676
            'bit_length': quant_bits,
677 678
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
679 680 681 682 683 684 685
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

686 687 688 689
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
690

691 692 693
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
694 695 696

        return quant_var_node, scale_out_node

697
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
698 699 700 701
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
702
            name=self._quantized_var_name(name),
703 704 705 706
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
707
            name=self._quantized_scale_name(name),
708 709 710
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
711 712
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
713 714 715 716 717 718
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
719 720 721 722 723 724 725 726 727 728

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
729 730
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
731
            _init_var_node(
732
                state_in_node,
733 734 735 736
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
737 738 739 740 741
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
742 743 744 745 746 747
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

784 785
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
786 787 788 789 790 791
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
792
            name=self._quantized_var_name(name),
793 794 795
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
796
        scale_var_node = graph.create_persistable_node(
797
            name=self._quantized_scale_name(name),
798
            var_type=var_node.type(),
799
            shape=[var_node.shape()[quant_axis]],
800
            var_dtype=var_node.dtype())
801 802 803 804 805 806 807 808
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
809 810 811 812
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
813
                'quant_axis': quant_axis,
814
                'is_test': self._is_test,
815 816 817 818 819 820 821 822 823 824
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
825 826 827 828 829 830 831 832
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
833 834 835
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
836 837 838
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
839 840 841 842
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
843 844 845
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
846 847 848
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
849 850
        return dequant_var_node

851
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
852
                                   quant_bits, quant_axis):
853 854 855 856 857 858 859 860 861 862 863 864 865 866
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
867
                'quant_axis': quant_axis,
868 869 870 871 872 873 874 875 876 877 878
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
964
                graph.out_node_mapping_table[out_node.name] = var_node.name()
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1068
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1069 1070
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1071

1072
    def _is_skip_quant(self, graph, op_node):
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1085 1086 1087
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1088 1089
        return is_skip

W
WangZhen 已提交
1090 1091 1092 1093 1094

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
1095
                 bias_correction=False,
W
WangZhen 已提交
1096 1097
                 weight_bits=8,
                 activation_bits=8,
1098
                 weight_quantize_type='abs_max',
1099
                 quantizable_op_type=None):
1100 1101
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1102
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1103
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1104 1105
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1106 1107 1108

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1109 1110
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1111 1112
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1113 1114 1115 1116 1117
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1118 1119
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1120
        """
W
WangZhen 已提交
1121 1122 1123 1124 1125
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
1126
        self._bias_correction = bias_correction
1127
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1128 1129 1130
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1131 1132
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1133 1134
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1135
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1136 1137

    def apply(self, graph):
1138 1139 1140 1141 1142
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1143 1144
        Returns:
            None
1145
        """
1146
        # Get input scales in fake quant op and process weights
1147 1148
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1149 1150 1151
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1152
                input_arg_name = op_node.input('X')[0]
1153 1154 1155 1156
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1169
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1170
                        scale_v = scale_v[0]
W
WangZhen 已提交
1171
                    else:
1172
                        scale_v = scale_v.tolist()
1173
                    self._quant_var_scale_map[input_arg_name] = scale_v
1174
                    # Quantize weight and restore
W
WangZhen 已提交
1175
                    param_v = self._load_var(input_arg_name)
1176 1177 1178 1179 1180 1181 1182
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
X
XGZhang 已提交
1183 1184 1185 1186
                        param_v.copy(), scale_v, self._weight_bits, quant_axis)
                    if self._bias_correction == True:
                        quantized_param_v = self._bias_correction_w(
                            param_v, quantized_param_v, scale_v, quant_axis)
W
WangZhen 已提交
1187
                    self._restore_var(input_arg_name, quantized_param_v)
1188
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1189

1190
        # Remove all fake dequant op
1191
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1192 1193 1194 1195 1196
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1197
        # Insert post dequant op
1198
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1199
        for op_node in ops:
1200 1201 1202
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1203
                if self._weight_quantize_type == 'channel_wise_abs_max':
1204 1205
                    self._insert_post_channel_dequant_op(graph, op_node,
                                                         quant_axis)
1206 1207
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1208

1209
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1210 1211
        for op_node in ops:
            for var_node in op_node.inputs:
1212 1213 1214
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1215 1216 1217 1218
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1219
        graph.resolve_hazard()
1220
        return graph
W
WangZhen 已提交
1221 1222

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1223 1224
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1225 1226
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1227
        else:
1228 1229
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1230
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1231

1232
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1233 1234 1235
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1236 1237 1238 1239 1240
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1241 1242 1243
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1244
            scale_v = self._quant_var_scale_map[original_var_name]
1245 1246 1247 1248 1249 1250 1251 1252
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1253
                scale_var_node = self._quant_var_scale_map[original_var_name]
1254

1255
        if len(op_node.output_arg_names()) != 1:
1256 1257 1258
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1259 1260
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1261 1262 1263 1264 1265
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1266 1267
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1268 1269 1270
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1271 1272 1273 1274 1275 1276 1277 1278 1279
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1280
                'quant_axis': quant_axis,
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1292
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1293 1294
        return dequant_var_node

W
WangZhen 已提交
1295
    def _insert_post_dequant_op(self, graph, op_node):
1296
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1297 1298 1299
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1300
        for var_node in op_node.inputs:
W
WangZhen 已提交
1301
            name = var_node.name()
1302 1303 1304 1305 1306
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1307
                new_in.clear_outputs()
W
WangZhen 已提交
1308 1309
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1310
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1311 1312 1313 1314
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1315
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1316
                max_range *= param_range / scale_v
W
WangZhen 已提交
1317
            else:
1318
                max_range *= act_range
1319
                assert isinstance(scale_v, IrNode)
1320
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1321

1322
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1323 1324 1325
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1326 1327
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1328 1329
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1330 1331 1332
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1333 1334
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1335 1336 1337 1338
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1339 1340 1341 1342 1343 1344
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1345
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1346 1347 1348 1349 1350
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1351 1352 1353
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1354 1355 1356

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1357
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1358 1359 1360 1361 1362 1363
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1364 1365 1366 1367 1368 1369
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1393
    def _is_float(self, v):
W
WangZhen 已提交
1394 1395 1396
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1397 1398
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1399 1400 1401 1402 1403 1404 1405
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1406 1407
        if isinstance(scale, list):
            for i, s in enumerate(scale):
X
XGZhang 已提交
1408 1409
                if s == 0.0:
                    s = 1e-8
1410
                if quant_axis == 0:
1411 1412
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1413
                else:
1414 1415
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1416
        else:
X
XGZhang 已提交
1417
            scale = 1e-8 if scale == 0.0 else scale
1418 1419 1420
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1421

X
XGZhang 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    def _bias_correction_w(self, x, x_quant, scale_v, quant_axis):
        '''
        Bias correction for weight
        '''
        eps = 1e-8
        bnt = (1 << (self._weight_bits - 1)) - 1
        x_dequant = x_quant.copy()
        if isinstance(scale_v, list):
            if quant_axis == 0:
                for i, s in enumerate(scale_v):
                    x_dequant[i] = x_dequant[i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
                std_orig = x.reshape(x.shape[0], -1).std(-1)
                std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
                std_bias = std_orig / (std_quant + eps)
            else:
                for i, s in enumerate(scale_v):
                    x_dequant[:, i] = x_quant[:, i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = np.array([
                    quant_bias[:, i].mean() for i in range(quant_bias.shape[1])
                ])
                std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
                std_quant = np.array(
                    [x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
                std_bias = std_orig / (std_quant + eps)
        else:
            x_dequant = x_quant * scale_v / bnt
            mean_bias = (x - x_dequant).mean()
            std_bias = x.std() / (x_dequant.std() + eps)
        if mean_bias.ndim == 1:
            std_bias = np.resize(std_bias, x.shape)
            mean_bias = np.resize(mean_bias, x.shape)

        x_dequant = (mean_bias + x_dequant) * std_bias
        quantized_param_v = self._quant(x_dequant, scale_v, self._weight_bits,
                                        quant_axis)
        return quantized_param_v

1462 1463

class ConvertToInt8Pass(object):
1464
    def __init__(self, scope, place, quantizable_op_type=None):
1465 1466 1467 1468 1469
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1470 1471 1472
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1473 1474
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1475
        """
1476 1477 1478 1479 1480
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1481
        self._place = _get_paddle_place(place)
1482 1483

    def apply(self, graph):
1484
        """
T
tianshuo78520a 已提交
1485 1486
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1487 1488 1489

        Args:
            graph(IrGraph): the applied graph.
1490 1491
        Returns:
            None
1492
        """
1493 1494
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1495 1496
        input_map = {}
        for op_node in ops:
1497 1498
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1511
        graph.resolve_hazard()
1512 1513 1514 1515
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1516
        int8_var_node = graph.create_persistable_node(
1517
            name=cpt.to_text(int8_var_node_name),
1518 1519
            var_type=var_node.type(),
            shape=var_node.shape(),
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1535
        ops = graph.all_op_nodes()
1536 1537 1538 1539 1540 1541
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1542 1543 1544 1545 1546 1547
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1548 1549 1550 1551 1552
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1553
        """
T
tianshuo78520a 已提交
1554
        This pass is used to convert the frozen graph for paddle-mobile execution.
1555
        """
1556 1557
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1558 1559

    def apply(self, graph):
1560 1561 1562 1563 1564 1565 1566
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1567 1568
        Returns:
            None
1569
        """
1570
        ops = graph.all_op_nodes()
1571 1572 1573
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1574
                op_node.set_type('quantize')
1575 1576 1577 1578 1579 1580 1581
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1582
                op_node.set_type('dequantize')
1583 1584 1585 1586 1587 1588
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1589
        graph.resolve_hazard()
1590
        return graph
1591 1592


1593
class OutScaleForTrainingPass(object):
1594 1595 1596 1597 1598 1599 1600
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1601 1602 1603
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1604 1605 1606
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1607
        self._place = _get_paddle_place(place)
1608 1609
        self._moving_rate = moving_rate
        self._is_test = None
1610
        self._teller_set = _out_scale_op_list
1611 1612 1613 1614 1615 1616 1617 1618 1619

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1620 1621
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1622
        self._is_test = graph.is_test()
1623 1624 1625 1626 1627 1628 1629
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1630 1631 1632 1633
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1634 1635 1636 1637 1638
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1639 1640 1641 1642 1643 1644 1645 1646
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1647
                ins = {'X': in_node}
1648
                outs = {'OutScale': scale_node}
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1709
class OutScaleForInferencePass(object):
1710 1711 1712 1713 1714 1715 1716 1717 1718
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1719
        self._teller_set = _out_scale_op_list
1720 1721 1722 1723 1724 1725 1726 1727 1728

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1729 1730
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1731 1732 1733
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1734 1735
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1736 1737 1738 1739 1740 1741
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1742
                    scale_name = self._scale_name(var_name)
1743 1744 1745 1746 1747 1748 1749
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1750 1751 1752 1753 1754

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1755
                        + "_threshold", float(scale_value))
1756 1757 1758 1759 1760 1761 1762 1763
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1764 1765 1766


class AddQuantDequantPass(object):
1767 1768 1769 1770
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1771 1772 1773 1774 1775
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1776
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
1777
        "leaky_relu", "tanh", "swish", "scale", "transpose", "transpose2",
1778
        "sigmoid", "pad2d", "flatten", "flatten2", "batch_norm", "layer_norm"
1779 1780
    ]

1781 1782 1783
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1784 1785 1786 1787 1788
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1789
                 skip_pattern=["skip_quant"],
1790
                 quantizable_op_type=["elementwise_add", "pool2d"],
1791
                 is_full_quantized=False):
1792
        """
1793
        Constructor.
1794 1795 1796

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1797 1798 1799
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1800 1801 1802 1803 1804 1805 1806 1807
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1808
                quantized. Default is ["elementwise_add", "pool2d"]. 
1809 1810 1811 1812
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1813 1814
        """
        self._scope = scope
1815
        self._place = _get_paddle_place(place)
1816 1817 1818
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1819
        self._skip_pattern = skip_pattern
1820 1821 1822 1823 1824 1825 1826

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1827
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1828
                    op_type + " is not supported for quantization."
1829 1830 1831 1832
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1833 1834
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1835 1836 1837

    def apply(self, graph):
        """
1838 1839
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1840

1841 1842
        Args:
            graph(IrGraph): the target graph.
1843 1844
        Returns:
            None
1845 1846 1847 1848
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1849 1850
        dequantized_vars_map = collections.OrderedDict()

1851 1852 1853
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1854
            if op_node.name() in self._quantizable_op_type:
1855
                is_skip = False
1856
                if isinstance(self._skip_pattern, list):
1857
                    is_skip = op_node.op().has_attr("op_namescope") and \
1858 1859
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1860
                    is_skip = op_node.op().has_attr("op_namescope") and \
1861
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1862 1863 1864
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1865
                    (not _is_input_all_not_persistable(graph, op_node)):
1866
                    continue
1867

1868 1869 1870
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1871
                arg_names = _get_op_input_var_names(op_node)
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1882

1883 1884
        # Backward stage, update input link
        for op_node in all_op_nodes:
1885
            if op_node.name() in self._quantizable_grad_op_type:
1886 1887 1888 1889 1890 1891 1892 1893
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node