test_paddle_multiprocessing.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import gc
import sys
import unittest
import time
import paddle
import paddle.incubate.multiprocessing as mp

REPEAT = 20
HAS_SHM_FILES = os.path.isdir('/dev/shm')


def fill_tensor(queue, event):
    data = queue.get()
    with paddle.no_grad():
        data[0][:] = 5
        data[1][:] = 5

    event.set()


def send_tensor(queue, event, device, dtype):
    tensor = paddle.ones([5, 5], dtype=dtype)
    queue.put(tensor)
    queue.put(tensor)
    event.wait()


def send_parambase(queue, event, device, dtype):
    tensor = paddle.nn.Layer().create_parameter(
        [5, 5],
        dtype=dtype,
        default_initializer=paddle.nn.initializer.Constant(value=1.0))
    queue.put(tensor)
    queue.put(tensor)
    event.wait()


class leak_checker(object):
    def __init__(self, test_case):
        self.checked_pids = [os.getpid()]
        self.test_case = test_case

    def __enter__(self):
        self.next_fds = self._get_next_fds(10)
        return self

    def __exit__(self, *args):
        if args[0] is None:
            self.test_case.assertFalse(self.has_shm_files())
        return False

    def check_pid(self, pid):
        self.checked_pids.append(pid)

    def _get_next_fds(self, n=1):
        fds = [os.dup(0) for i in range(n)]
        for fd in fds:
            os.close(fd)
        return fds

    def has_shm_files(self, wait=True):
        if not HAS_SHM_FILES:
            return False
        result = self._has_shm_files()
        if result and wait:
            time.sleep(0.5)
            return self._has_shm_files()
        return result

    def _has_shm_files(self):
        gc.collect()
        names = ['paddle_' + str(pid) for pid in self.checked_pids]
        for filename in os.listdir('/dev/shm'):
            for name in names:
                if filename.startswith(name):
                    print("have", filename)
                    return True
        return False


class TestMultiprocessingBase(unittest.TestCase):
    def get_tensor(self, device="cpu"):
        self.device = device.lower()
        place = None
        tensor = paddle.zeros([5, 5], dtype="float32")
        return tensor

    def get_parameter(self):
        w = paddle.nn.Layer().create_parameter(
            [10, 10],
            default_initializer=paddle.nn.initializer.Constant(value=0.0))
        return w

    def _test_empty(self, dtype="float32"):
        q = mp.Queue()
        empty = paddle.to_tensor([], dtype=dtype)
        q.put(empty)
        out = q.get(timeout=1)
        self.assertEqual(str(out), str(empty))

    def _test_sharing(self,
                      ctx=mp,
                      device='cpu',
                      dtype="float32",
                      repeat=1,
                      param=False):
        def test_fill():
            if param:
                x = self.get_parameter()
                y = (x[:, 1]).detach()
            else:
                x = self.get_tensor()
                y = x[:, 1]

            data = [x, y]

            queue = ctx.Queue()
            event = ctx.Event()
            queue.put(data)

            process = ctx.Process(target=fill_tensor, args=(queue, event))
            process.daemon = True
            lc.check_pid(process.pid)
            process.start()

            event.wait(30)

            self.assertTrue(event.is_set())
            self.assertTrue(data[0].equal(5).all())
            self.assertTrue(data[1].equal(5).all())

            process.join(1 if device != "gpu" else 10)
            self.assertFalse(process.is_alive())

        def test_receive():
            queue = ctx.Queue()
            event = ctx.Event()

            process = ctx.Process(
                target=send_parambase if param else send_tensor,
                args=(queue, event, device, dtype))
            process.daemon = True
            lc.check_pid(process.pid)
            process.start()

            t1 = queue.get()
            t2 = queue.get()
            self.assertTrue(t1.equal(1).all())
            del t1, t2

            event.set()
            process.join(1 if device != "gpu" else 10)
            self.assertFalse(process.is_alive())

        with leak_checker(self) as lc:
            for _ in range(repeat):
                test_fill()
                test_receive()


class TestMultiprocessingCpu(TestMultiprocessingBase):
    def test_pass_tensor(self):
        paddle.set_device("cpu")
        self._test_sharing(repeat=REPEAT)

    def test_pass_parambase(self):
        paddle.set_device("cpu")
        self._test_sharing(repeat=1, param=True)

    def test_pass_empty(self):
        paddle.set_device("cpu")
        self._test_empty()


class TestMultiprocessingGpu(TestMultiprocessingBase):
    @unittest.skipIf(not paddle.fluid.core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    def test_pass_tensor(self):
        paddle.set_device("gpu")
        self._test_sharing(mp.get_context("spawn"), "gpu")


if __name__ == "__main__":
    unittest.main()