test_retain_graph.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
import unittest

paddle.enable_imperative()
SEED = 2020
np.random.seed(SEED)
fluid.default_main_program().random_seed = SEED


class Generator(fluid.dygraph.Layer):
    def __init__(self):
        super(Generator, self).__init__()
        self.conv1 = paddle.nn.Conv2D(3, 3, 3, 1)

    def forward(self, x):
        x = self.conv1(x)
        x = fluid.layers.tanh(x)
        return x


class Discriminator(fluid.dygraph.Layer):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.convd = paddle.nn.Conv2D(6, 3, 1)

    def forward(self, x):
        x = self.convd(x)
        return x


class TestRetainGraph(unittest.TestCase):
    def cal_gradient_penalty(self,
                             netD,
                             real_data,
                             fake_data,
                             edge_data=None,
                             type='mixed',
                             constant=1.0,
                             lambda_gp=10.0):
        if lambda_gp > 0.0:
            if type == 'real':
                interpolatesv = real_data
            elif type == 'fake':
                interpolatesv = fake_data
            elif type == 'mixed':
                alpha = paddle.rand((real_data.shape[0], 1))
                alpha = paddle.expand(
                    alpha, [1, np.prod(real_data.shape) // real_data.shape[0]])
                alpha = paddle.reshape(alpha, real_data.shape)
                interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
            else:
                raise NotImplementedError('{} not implemented'.format(type))
            interpolatesv.stop_gradient = False
            real_data.stop_gradient = True
            fake_AB = paddle.concat((real_data.detach(), interpolatesv), 1)
            disc_interpolates = netD(fake_AB)

            outs = paddle.fill_constant(disc_interpolates.shape,
                                        disc_interpolates.dtype, 1.0)
            gradients = paddle.imperative.grad(
                outputs=disc_interpolates,
                inputs=fake_AB,
                grad_outputs=outs,
                create_graph=True,
                retain_graph=True,
                only_inputs=True)

            gradients = paddle.reshape(gradients[0], [real_data.shape[0], -1])

            gradient_penalty = paddle.reduce_mean((paddle.norm(
                gradients + 1e-16, 2, 1) - constant)**
                                                  2) * lambda_gp  # added eps
            return gradient_penalty, gradients
        else:
            return 0.0, None

    def test_retain(self):
        g = Generator()
        d = Discriminator()

        optim_g = paddle.optimizer.Adam(parameter_list=g.parameters())
        optim_d = paddle.optimizer.Adam(parameter_list=d.parameters())

        gan_criterion = paddle.nn.MSELoss()
        l1_criterion = paddle.nn.L1Loss()

        A = np.random.rand(2, 3, 32, 32).astype('float32')
        B = np.random.rand(2, 3, 32, 32).astype('float32')

        realA = paddle.imperative.to_variable(A)
        realB = paddle.imperative.to_variable(B)
        fakeB = g(realA)

        optim_d.clear_gradients()
        fake_AB = paddle.concat((realA, fakeB), 1)
        G_pred_fake = d(fake_AB.detach())

        false_target = paddle.fill_constant(G_pred_fake.shape, 'float32', 0.0)

        G_gradient_penalty, _ = self.cal_gradient_penalty(
            d, realA, fakeB, lambda_gp=10.0)
        loss_d = gan_criterion(G_pred_fake, false_target) + G_gradient_penalty

        loss_d.backward(retain_graph=True)
        optim_d.minimize(loss_d)

        optim_g.clear_gradients()
        fake_AB = paddle.concat((realA, fakeB), 1)
        G_pred_fake = d(fake_AB)
        true_target = paddle.fill_constant(G_pred_fake.shape, 'float32', 1.0)
        loss_g = l1_criterion(fakeB, realB) + gan_criterion(G_pred_fake,
                                                            true_target)

        loss_g.backward()
        optim_g.minimize(loss_g)


if __name__ == '__main__':
    unittest.main()