parameter_send.cc 12.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/operators/distributed/parameter_send.h"
Q
Qiao Longfei 已提交
16
#include <memory>
Q
Qiao Longfei 已提交
17 18
#include <set>
#include <string>
19
#include <utility>
Q
Qiao Longfei 已提交
20 21 22 23 24 25 26 27 28 29 30
#include <vector>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
C
chengmo 已提交
31
#include "paddle/fluid/platform/profiler.h"
32
#include "paddle/fluid/string/printf.h"
Q
Qiao Longfei 已提交
33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

43 44
typedef std::vector<std::pair<std::string, std::string>> EP_SPLIT_TABLE_PAIRS;

45 46 47
inline EP_SPLIT_TABLE_PAIRS GetMultiFieldCommContext(
    const CommContext &rpc_ctx, const framework::Scope &scope,
    int multi_parts) {
48 49 50 51
  EP_SPLIT_TABLE_PAIRS table_pairs;

  auto *send_var = scope.FindVar(rpc_ctx.var_name);
  if (send_var->IsType<framework::SelectedRows>()) {
52 53 54 55 56 57 58 59
    PADDLE_ENFORCE_GE(multi_parts, 1,
                      platform::errors::InvalidArgument(
                          "multi_parts must == 1 in parameter send, now is: %d",
                          multi_parts));

    for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
      table_pairs.push_back(
          std::make_pair(rpc_ctx.epmap[i], rpc_ctx.splited_varnames[i]));
60 61 62
    }

  } else {
63 64
    PADDLE_THROW(platform::errors::InvalidArgument(
        "GetMultiFieldCommContext unsupported LoDTensor current!"));
65 66 67 68 69
  }

  return table_pairs;
}  // namespace distributed

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
void SendByNotifyRPC(const CommContext &rpc_ctx,
                     const framework::Scope &scope) {
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto &send_var_name = rpc_ctx.var_name;
  std::vector<distributed::VarHandlePtr> rets;

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

  if (NeedSend(scope, send_var_name)) {
    for (size_t j = 0; j < rpc_ctx.epmap.size(); j++) {
      auto &endpoint = rpc_ctx.epmap[j];
      VLOG(4) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncDistributeNotify(endpoint, cpu_ctx, scope,
                                                       send_var_name));
      VLOG(4) << "send var " << send_var_name << " by notify RPC done";
    }
  } else {
    VLOG(3) << "don't send non-initialized variable: " << rpc_ctx.var_name;
  }

  for (auto &handle : rets) {
    PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout(
                                              "internal error in RPCClient"));
  }
}

97
template <typename T>
98
void ParameterSend<T>::operator()(const CommContext &rpc_ctx,
99 100
                                  const framework::Scope &scope, bool sync,
                                  int multi_parts) {
101 102 103 104 105
  if (rpc_ctx.var_name == STEP_COUNTER) {
    SendByNotifyRPC(rpc_ctx, scope);
    return;
  }

106
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
Q
Qiao Longfei 已提交
107 108 109 110 111

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx = *pool.Get(platform::CPUPlace());

  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
112
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
Q
Qiao Longfei 已提交
113

114
  std::vector<distributed::VarHandlePtr> rets;
115
  auto *send_var = scope.FindVar(rpc_ctx.var_name);
116

Q
Qiao Longfei 已提交
117
  if (send_var->IsType<framework::LoDTensor>()) {
C
fix  
chengmo 已提交
118 119
    platform::RecordEvent record_event_grpc("ParameterSend::LoDTensor",
                                            platform::EventRole::kInnerOp);
120
    size_t out_num = rpc_ctx.splited_varnames.size();
Q
Qiao Longfei 已提交
121 122 123 124 125
    if (out_num > 1) {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
      auto &send_tensor_dims = send_tensor.dims();
      std::vector<framework::DDim> outs_dims;
      outs_dims.reserve(out_num);
Q
Qiao Longfei 已提交
126

Q
Qiao Longfei 已提交
127
      // infer output shape
128
      PADDLE_ENFORCE_EQ(rpc_ctx.height_sections.size(), out_num,
Q
Qiao Longfei 已提交
129 130 131 132
                        "tensor split sections size"
                        "should be equal to output size.");
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
133
        dim[0] = rpc_ctx.height_sections[i];
Q
Qiao Longfei 已提交
134 135 136
        outs_dims.push_back(dim);
      }

Q
Qiao Longfei 已提交
137 138
      // create output var in local scope
      size_t row_offset = 0;
139
      for (size_t i = 0; i < out_num; ++i) {
140
        framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[i])
Q
Qiao Longfei 已提交
141
                                     ->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
142 143 144
        *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
        row_offset += outs_dims[i][0];
      }
T
tangwei12 已提交
145 146
    } else {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
147
      framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[0])
T
tangwei12 已提交
148 149
                                   ->GetMutable<framework::LoDTensor>();
      out->ShareDataWith(send_tensor);
Q
Qiao Longfei 已提交
150
    }
151 152 153 154 155 156 157 158 159 160 161 162 163 164

    for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
      auto &send_var_name = rpc_ctx.splited_varnames[i];
      auto &endpoint = rpc_ctx.epmap[i];
      VLOG(4) << " send var name: " << send_var_name
              << "endpoint: " << endpoint;
      if (NeedSend(*local_scope.get(), send_var_name)) {
        VLOG(3) << "sending " << send_var_name << " to " << endpoint;
        rets.push_back(rpc_client->AsyncSendVar(
            endpoint, cpu_ctx, *local_scope.get(), send_var_name));
        VLOG(4) << "send var " << send_var_name << " async handle done";
      } else {
        VLOG(3) << "don't send non-initialized variable: "
                << rpc_ctx.splited_varnames[i];
165 166
      }
    }
167
  } else if (send_var->IsType<framework::SelectedRows>()) {
C
fix  
chengmo 已提交
168 169
    platform::RecordEvent record_event_grpc("ParameterSend::SelectedRows",
                                            platform::EventRole::kInnerOp);
Q
Qiao Longfei 已提交
170
    auto &send_slr = send_var->Get<framework::SelectedRows>();
171

Q
Qiao Longfei 已提交
172
    auto &send_rows = send_slr.rows();
173
    if (send_rows.size() == 0) {
174 175 176 177 178
      LOG(WARNING)
          << "WARNING: The variable sent to pserver is empty, which "
             "may cause an unknown error. Please check the state of "
             "use_double_buffer in pyreader/dataloader async mode, you need to "
             "turn it false.";
179 180
    }

181 182
    std::vector<std::vector<size_t>> outs_rows_idx;
    std::vector<std::vector<size_t>> outs_dense_idx;
183

184
    auto table_pairs = GetMultiFieldCommContext(rpc_ctx, scope, 1);
185 186
    outs_rows_idx.resize(table_pairs.size());
    outs_dense_idx.resize(table_pairs.size());
187 188

    auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
Q
Qiao Longfei 已提交
189
    auto *src = send_slr.value().data<T>();
190

Q
Qiao Longfei 已提交
191
    // create output var in local scope
Q
Qiao Longfei 已提交
192
    std::vector<framework::SelectedRows *> outs;
193 194 195
    for (auto &table : table_pairs) {
      auto *out =
          local_scope->Var(table.second)->GetMutable<framework::SelectedRows>();
196 197 198
      outs.push_back(out);
    }

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    if (!rpc_ctx.is_distributed) {
      auto pserver_num = rpc_ctx.epmap.size();

      // split rows index into output sparse vars
      for (size_t i = 0; i < send_rows.size(); ++i) {
        auto ep_idx = send_rows[i] % pserver_num;
        auto id = send_rows[i] / pserver_num;
        outs_rows_idx[ep_idx].push_back(id);
        outs_dense_idx[ep_idx].push_back(i);
      }

      auto place = platform::CPUPlace();

      for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size();
           out_idx++) {
        auto rows_idx = outs_rows_idx[out_idx];

        auto dims = send_slr.GetCompleteDims();
        dims[0] = rows_idx.size();
        outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]);
        outs[out_idx]->mutable_rows()->clear();
        outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());

        if (rows_idx.size() > 0) {
          for (auto idx : rows_idx) {
            outs[out_idx]->mutable_rows()->push_back(idx);
          }
          auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
          for (size_t j = 0; j < rows_idx.size(); j++) {
            if (platform::is_cpu_place(place)) {
              memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                           platform::CPUPlace(),
                           src + outs_dense_idx[out_idx][j] * row_numel,
                           sizeof(T) * row_numel);
            } else {
              PADDLE_THROW(
                  platform::errors::Unimplemented("do not support GPU now"));
            }
          }
        }
        PADDLE_ENFORCE_EQ(
            rows_idx.size(), outs[out_idx]->rows().size(),
            platform::errors::InvalidArgument(
                "rows should has the same size with tensor dim 0"));
      }
    } else {
      auto pserver_num = rpc_ctx.epmap.size();

      // split rows index into output sparse vars
      for (size_t i = 0; i < send_rows.size(); ++i) {
        auto out_idx = send_rows[i] % pserver_num;
        outs_rows_idx[out_idx].push_back(send_rows[i]);
        outs_dense_idx[out_idx].push_back(i);
      }
253

254
      auto place = platform::CPUPlace();
255

256 257
      for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size();
           out_idx++) {
258 259 260 261 262
        auto rows_idx = outs_rows_idx[out_idx];

        auto dims = send_slr.GetCompleteDims();
        dims[0] = rows_idx.size();

263
        outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]);
264 265 266 267 268
        outs[out_idx]->mutable_rows()->clear();
        outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());

        if (rows_idx.size() > 0) {
          for (auto idx : rows_idx) {
269
            outs[out_idx]->mutable_rows()->push_back(idx);
270 271 272 273 274 275 276 277 278
          }
          auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
          for (size_t j = 0; j < rows_idx.size(); j++) {
            if (platform::is_cpu_place(place)) {
              memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                           platform::CPUPlace(),
                           src + outs_dense_idx[out_idx][j] * row_numel,
                           sizeof(T) * row_numel);
            } else {
279 280
              PADDLE_THROW(
                  platform::errors::Unimplemented("do not support GPU now"));
281
            }
282 283
          }
        }
284 285 286 287
        PADDLE_ENFORCE_EQ(
            rows_idx.size(), outs[out_idx]->rows().size(),
            platform::errors::InvalidArgument(
                "rows should has the same size with tensor dim 0"));
288 289 290
      }
    }

291 292 293 294
    for (size_t i = 0; i < table_pairs.size(); i++) {
      auto &send_var_name = table_pairs[i].second;
      auto &endpoint = table_pairs[i].first;
      auto need_send = NeedSend(*local_scope.get(), send_var_name);
Q
Qiao Longfei 已提交
295

296
      VLOG(4) << "send var name: " << send_var_name
297 298
              << " send var endpoint: " << endpoint
              << " need send: " << need_send;
299 300 301 302 303 304 305 306 307

      if (need_send) {
        VLOG(4) << "sending " << send_var_name << " to " << endpoint;

        rets.push_back(rpc_client->AsyncSendVar(
            endpoint, cpu_ctx, *local_scope.get(), send_var_name));
        VLOG(4) << "send var " << send_var_name << " async handle done";
      } else {
        VLOG(4) << "don't send non-initialized variable: "
308
                << rpc_ctx.splited_varnames[i];
309
      }
Q
Qiao Longfei 已提交
310
    }
311 312
  } else {
    PADDLE_THROW("unsupported var type to send!");
Q
Qiao Longfei 已提交
313 314
  }

315
  VLOG(4) << "Prepare to send var " << rpc_ctx.var_name;
316 317
  if (sync) {
    for (auto &handle : rets) {
318
      VLOG(4) << "Wait send var to pserver handle: " << handle;
319 320
      PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout(
                                                "internal error in RPCClient"));
Q
Qiao Longfei 已提交
321 322 323 324
    }
  }
}

Q
Qiao Longfei 已提交
325 326
template struct ParameterSend<float>;

Q
Qiao Longfei 已提交
327 328 329
};  // namespace distributed
};  // namespace operators
};  // namespace paddle