elementwise_sub_op.cu 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
17
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
18 19

namespace ops = paddle::operators;
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

template <typename T>
struct SameDimsElemwiseSub<platform::CUDADeviceContext, T> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    SubRangeFunctor<T> functor(x->data<T>(), y->data<T>(), z->data<T>());
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
                                                              x->numel());
    for_range(functor);
  }
};

template <>
struct SameDimsElemwiseSub<platform::CUDADeviceContext, platform::float16> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    auto size = x->numel();
    dim3 gird_size = dim3(
        (size / 2 + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    const half* x2 =
        reinterpret_cast<const half*>(x->data<platform::float16>());
    const half* y2 =
        reinterpret_cast<const half*>(y->data<platform::float16>());
    half* z2 = reinterpret_cast<half*>(z->data<platform::float16>());
    SameDimsElemwiseSubCUDAKernel<<<
        gird_size, block_size, 0,
        ctx.template device_context<platform::CUDADeviceContext>().stream()>>>(
        x2, y2, z2, size);
  }
};

template <typename T>
static __global__ void SimpleElemwiseSubGradCUDAKernel(const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    dx[col] = dout[col];
    dy[col] = -dout[col];
    col += blockDim.x * gridDim.x;
  }
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
  dim3 gird_size =
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseSubGradCUDAKernel<
      T><<<gird_size, block_size, 0,
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      dout->data<T>(), size, dx->mutable_data<T>(ctx.GetPlace()),
      dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
G
gongweibao 已提交
93

Q
QI JUN 已提交
94
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
95
    elementwise_sub,
Q
QI JUN 已提交
96
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, float>,
97 98
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
Q
QI JUN 已提交
99 100
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, int>,
101
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, int64_t>);
Q
QI JUN 已提交
102
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
103
    elementwise_sub_grad,
Q
QI JUN 已提交
104
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, float>,
105 106
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
Q
QI JUN 已提交
107 108 109 110
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
                                  int64_t>);
111 112 113 114 115 116 117 118 119 120
REGISTER_OP_CUDA_KERNEL(
    elementwise_sub_grad_grad,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        float>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        double>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int64_t>);