conv2d_op.cc 7.0 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

L
Luo Tao 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
L
Luo Tao 已提交
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
L
Luo Tao 已提交
16

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

L
Luo Tao 已提交
27 28 29 30
namespace paddle {
namespace inference {
namespace tensorrt {

31 32 33 34 35 36 37 38 39 40
template <typename RegistFunc, typename SetDilationFunc>
void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op,
                   const framework::Scope& scope, bool test_mode,
                   RegistFunc fadd_layer, SetDilationFunc fset_dilation,
                   const std::string& name) {
  VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias";

  framework::OpDesc op_desc(op, nullptr);

  auto* X = engine->GetITensor(op_desc.Input("Input").front());
41 42 43 44 45
  std::string filter_var_name = op_desc.Input("Filter").front();
  auto* Y_v = scope.FindVar(filter_var_name);
  PADDLE_ENFORCE_NOT_NULL(
      Y_v, platform::errors::NotFound(
               "Can not find %s presistale var in scope.", filter_var_name));
46
  auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
47
  float* weight_data = nullptr;
48
  bool enable_int8 = op_desc.HasAttr("enable_int8");
49 50 51

  if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
52 53
    float in_scale =
        BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale")) * 127;
54
    auto weight_scale =
55
        BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
56 57 58 59 60 61 62 63
    weight_data = engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t,
                                           true, weight_scale);
    engine->SetTensorDynamicRange(X, in_scale);
#endif
  } else {
    weight_data =
        engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t, false);
  }
64

65 66 67 68 69
  PADDLE_ENFORCE_EQ(Y_t->dims().size(), 4UL,
                    platform::errors::InvalidArgument(
                        "The conv2d filter's dims size should be 4, but got %d",
                        Y_t->dims().size()));

70 71 72 73
  const int n_output = Y_t->dims()[0];
  const int n_input = Y_t->dims()[1];
  const int filter_h = Y_t->dims()[2];
  const int filter_w = Y_t->dims()[3];
74
  const int groups = BOOST_GET_CONST(int, op_desc.GetAttr("groups"));
75
  const std::vector<int> dilations =
76
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("dilations"));
77
  const std::vector<int> strides =
78
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
79
  const std::vector<int> paddings =
80
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
81 82 83 84
  std::string padding_algorithm = "EXPLICIT";
  if (op_desc.HasAttr("padding_algorithm"))
    padding_algorithm =
        BOOST_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm"));
85 86 87 88 89 90 91 92

  nvinfer1::DimsHW nv_ksize(filter_h, filter_w);
  nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]);
  nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
  nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

  TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(weight_data),
93
                                static_cast<size_t>(Y_t->numel())};
94 95 96 97 98 99 100 101 102
  float* bias_data = nullptr;
  size_t bias_size = 0;
  if (op_desc.Type() == "conv2d_fusion") {
    auto* bias_tensor = scope.GetVar(op_desc.Input("Bias").front());
    auto* bias_tensor_data = bias_tensor->GetMutable<framework::LoDTensor>();
    bias_data = engine->GetWeightCPUData(op_desc.Input("Bias").front(),
                                         bias_tensor_data, false);
    bias_size = static_cast<size_t>(bias_tensor_data->numel());
  }
103

104 105
  TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                              static_cast<void*>(bias_data), bias_size};
106 107
  auto* layer = fadd_layer(const_cast<nvinfer1::ITensor*>(X), n_output, n_input,
                           nv_ksize, weight, bias);
S
Shang Zhizhou 已提交
108 109 110
  PADDLE_ENFORCE_NOT_NULL(layer,
                          platform::errors::Fatal("TensorRT create conv2d"
                                                  " layer error."));
111 112 113
  layer->setStride(nv_strides);
  layer->setPadding(nv_paddings);
  layer->setNbGroups(groups);
114 115 116
  if (padding_algorithm == "SAME") {
    layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
  }
117 118 119 120 121 122 123 124
  // set dilations
  fset_dilation(layer, nv_dilations);

  auto output_name = op_desc.Output("Output").front();
  layer->setName((name + " (Output: " + output_name + ")").c_str());
  layer->getOutput(0)->setName(output_name.c_str());
  engine->SetITensor(output_name, layer->getOutput(0));

N
nhzlx 已提交
125
  if (test_mode) {
126 127 128 129
    engine->DeclareOutput(output_name);
  }
}

L
Luo Tao 已提交
130 131
class Conv2dOpConverter : public OpConverter {
 public:
132
  void operator()(const framework::proto::OpDesc& op,
133
                  const framework::Scope& scope, bool test_mode) override {
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */
            int n_input,                             /* Conv input maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* {
          auto* layer =
              TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
          layer->setDilation(dilations);
        },
        "conv2d");
  }
};

class Deconv2dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */
            int n_input,                             /* Deconv output maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* {
          auto* layer =
163
              TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_output,
164 165 166 167 168 169
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
        },
        "conv2d_transpose");
L
Luo Tao 已提交
170 171
  }
};
L
Luo Tao 已提交
172

L
Luo Tao 已提交
173 174 175
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
176 177

REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
178
REGISTER_TRT_OP_CONVERTER(conv2d_fusion, Conv2dOpConverter);
179
REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter);