lite_subgraph_pass.cc 15.9 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include <fstream>
#include <iostream>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/lite/op_teller.h"
#include "paddle/fluid/inference/utils/singleton.h"

#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/inference/analysis/ir_passes/lite_subgraph_pass.h"
#include "paddle/fluid/string/pretty_log.h"

#include "paddle/fluid/inference/lite/engine.h"

namespace paddle {
namespace inference {
namespace analysis {

using framework::ir::Node;
using framework::ir::Agent;
using framework::ir::SubGraphFuser;
using framework::ir::Graph;

namespace lite {

std::string UniqueKey(const std::vector<std::string>& engine_inputs,
                      const std::vector<std::string>& engine_outputs,
                      const std::string& id) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  engine_hash_key += id;
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

std::vector<std::string> IOVarsFilter(const std::vector<Node*>& nodes) {
  std::set<std::string> names;
  for (const auto& node : nodes) {
    if (node->IsVar() && !node->Var()->Persistable()) {
      names.insert(node->Name());
    }
  }
  return std::vector<std::string>(names.begin(), names.end());
}

void StrToBinaryFile(const std::string& path, const std::string& str) {
  std::ofstream file(path.c_str(), std::ios::binary);
  file.write(str.c_str(), str.size());
  file.close();
}

void ModifyHostSubgraphOps(
    framework::ProgramDesc* host_program, framework::BlockDesc* host_sub_block,
    const std::vector<framework::OpDesc*>& subgraph_ops) {
  for (auto* op_desc : subgraph_ops) {
    auto* sub_block_op = host_sub_block->AppendOp();
    sub_block_op->CopyFrom(*op_desc);
    if (op_desc->HasAttr("sub_block")) {
      int32_t global_sub_id = host_sub_block->ID();
      auto* op_sub_block =
          host_program->MutableBlock(op_desc->GetBlockAttrId("sub_block"));
      op_sub_block->Proto()->set_parent_idx(global_sub_id);
    }
  }
}

void ModifyHostProgram(framework::ProgramDesc* host_program,
                       framework::BlockDesc* host_sub_block,
                       const std::unordered_set<Node*>& io_var_nodes,
                       const std::vector<framework::OpDesc*>& subgraph_ops) {
  for (auto* var_node : io_var_nodes) {
    auto* sub_block_var = host_sub_block->Var(var_node->Name());
    sub_block_var->Proto()->CopyFrom(*var_node->Var()->Proto());
  }
  ModifyHostSubgraphOps(host_program, host_sub_block, subgraph_ops);
}

void AppendLiteSubBlocks(const std::vector<framework::OpDesc*>& subgraph_ops,
                         framework::ProgramDesc* engine_program,
                         framework::ProgramDesc* host_program,
                         const int32_t host_sub_id) {
  std::unordered_map<int32_t, int32_t> sub_blocks_map;
  std::unordered_set<int32_t> copied_host_ids;
  sub_blocks_map[host_sub_id] = framework::kRootBlockIndex;
  std::function<void(const std::vector<framework::OpDesc*>&)> append_sub_blocks;
  append_sub_blocks = [&](const std::vector<framework::OpDesc*>& ops) {
    for (auto* op_desc : ops) {
      if (op_desc->HasAttr("sub_block")) {
        int32_t host_op_sub_id = op_desc->GetBlockAttrId("sub_block");
        if (copied_host_ids.count(host_op_sub_id)) continue;
        size_t engine_block_size = engine_program->Size();
        auto* host_op_sub_block = host_program->MutableBlock(host_op_sub_id);
        auto* engine_op_sub_block =
            engine_program->AppendBlock(*(op_desc->Block()));
        for (auto* var : host_op_sub_block->AllVars()) {
          auto* engine_var = engine_op_sub_block->Var(var->Name());
          engine_var->Proto()->CopyFrom(*var->Proto());
        }
        for (auto* op : host_op_sub_block->AllOps()) {
          auto* engine_op = engine_op_sub_block->AppendOp();
          engine_op->Proto()->CopyFrom(*op->Proto());
        }
        sub_blocks_map[host_op_sub_id] = engine_block_size;
        append_sub_blocks(host_op_sub_block->AllOps());
      }
    }
  };
  append_sub_blocks(subgraph_ops);
  for (size_t i = 0; i < engine_program->Size(); i++) {
    for (auto* op_desc : engine_program->Block(i).AllOps()) {
      if (op_desc->HasAttr("sub_block")) {
        int32_t id = op_desc->GetBlockAttrId("sub_block");
        op_desc->SetAttr("sub_block", sub_blocks_map[id]);
      }
    }
  }
}

// The modification of pass should be a process of framework::desc
// (initial) -> proto::desc (flush) -> framework::desc (final).
// Ir::Graph is limited to changing the main block, so the sub block
// needs to be processed here.
void ModifyEngineProgram(Node* merged_node,
                         framework::ProgramDesc* host_program,
                         framework::ProgramDesc* engine_program,
                         const int32_t host_sub_block_id,
                         const std::unordered_set<Node*>& io_var_nodes,
                         const std::vector<framework::OpDesc*>& subgraph_ops) {
  // 1. Fill the main block of lite program.
  framework::BlockDesc* engine_global_block =
      engine_program->MutableBlock(framework::kRootBlockIndex);
  PrependFeedOps(engine_global_block, IOVarsFilter(merged_node->inputs));
  for (auto* var_node : io_var_nodes) {
    framework::VarDesc* sub_block_var =
        engine_global_block->Var(var_node->Name());
    sub_block_var->Proto()->CopyFrom(*var_node->Var()->Proto());
  }
  for (auto* op_desc : subgraph_ops) {
    auto* sub_block_op = engine_global_block->AppendOp();
    sub_block_op->CopyFrom(*op_desc);
  }
  PrependFetchOps(engine_global_block, IOVarsFilter(merged_node->outputs));

  // 2. Append sub blocks in the lite program.
  AppendLiteSubBlocks(subgraph_ops, engine_program, host_program,
                      host_sub_block_id);
}

void OrganizeProgram(Node* merged_node, framework::ProgramDesc* host_program,
                     framework::ProgramDesc* engine_program,
                     std::vector<std::string>* repetitive_params) {
  std::vector<framework::ir::Node*>& subgraph = *Agent(merged_node).subgraph();
  PADDLE_ENFORCE_EQ(subgraph.empty(), false,
                    platform::errors::NotFound(
                        "No subgraph found in lite subgraph pass. Please use "
                        "the full model call from Analysis Predictor."));

  const framework::BlockDesc& host_global_block =
      host_program->Block(framework::kRootBlockIndex);
  framework::BlockDesc* host_sub_block =
      host_program->AppendBlock(host_global_block);

  string::PrettyLogDetail("---  detect a sub-graph with %d nodes",
                          subgraph.size());

  std::unordered_set<Node*> io_var_nodes = GetRelatedIOVarNodes(subgraph);
  for (const auto* node : io_var_nodes) {
    VLOG(3) << "IO Variable Name: " << node->Name();
  }

  std::vector<framework::OpDesc*> subgraph_ops;
  for (auto* op_node : subgraph) {
    subgraph_ops.push_back(op_node->Op());
  }

  ModifyHostProgram(host_program, host_sub_block, io_var_nodes, subgraph_ops);
  ModifyEngineProgram(merged_node, host_program, engine_program,
                      host_sub_block->ID(), io_var_nodes, subgraph_ops);
  *repetitive_params = ExtractParameters(io_var_nodes, true);
  for (const auto& param : *repetitive_params) {
    VLOG(3) << "Repetitive param: " << param;
  }
  host_program->Flush();
  engine_program->Flush();
}
}  // namespace lite

void LiteSubgraphPass::SetUpEngine(
    framework::ProgramDesc* program,
    const std::vector<std::string>& repetitive_params,
    const std::string& unique_key, bool dump_model) const {
  inference::lite::EngineConfig config;
  auto* scope = param_scope();

  // When the pass is started, only the persistent variables of the
  // main block are read. Fluid seems to allow persistence variables
  // in the sub block, but they are controlled by context, so the
  // support is suspended here.
  auto serialize_params = [](std::string* str, framework::Scope* scope,
                             const std::vector<std::string>& params) {
    std::ostringstream os;
    platform::CPUDeviceContext ctx;
    for (const auto& param : params) {
      VLOG(3) << "Serialize param: " << param;
      PADDLE_ENFORCE_NOT_NULL(
          scope->FindVar(param),
          platform::errors::NotFound(
              "Block should already have a '%s' variable", param));
      auto* tensor = scope->FindVar(param)->GetMutable<framework::LoDTensor>();
      framework::SerializeToStream(os, *tensor, ctx);
    }
    *str = os.str();
  };

  bool use_gpu = Get<bool>("use_gpu");
  bool enable_int8 = Get<bool>("enable_int8");
245
  bool use_xpu = Get<bool>("use_xpu");
W
Wilber 已提交
246
  int xpu_device_id = Get<int>("xpu_device_id");
247
  int xpu_l3_workspace_size = Get<int>("xpu_l3_workspace_size");
W
Wilber 已提交
248
  int cpu_math_library_num_threads = Get<int>("cpu_math_library_num_threads");
W
Wilber 已提交
249 250 251 252 253
  bool locked = Get<bool>("locked");
  bool autotune = Get<bool>("autotune");
  std::string autotune_file = Get<std::string>("autotune_file");
  std::string precision = Get<std::string>("precision");
  bool adaptive_seqlen = Get<bool>("adaptive_seqlen");
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  // NNAdapter Related
  bool use_nnadapter = Get<bool>("use_nnadapter");
  std::string nnadapter_model_cache_dir =
      Get<std::string>("nnadapter_model_cache_dir");
  auto nnadapter_device_names =
      Get<std::vector<std::string>>("nnadapter_device_names");
  std::string nnadapter_context_properties =
      Get<std::string>("nnadapter_context_properties");
  std::string nnadapter_subgraph_partition_config_buffer =
      Get<std::string>("nnadapter_subgraph_partition_config_buffer");
  std::string nnadapter_subgraph_partition_config_path =
      Get<std::string>("nnadapter_subgraph_partition_config_path");
  auto nnadapter_model_cache_buffer =
      Get<std::vector<std::vector<char>>>("nnadapter_model_cache_buffer");
  auto nnadapter_model_cache_token =
      Get<std::vector<std::string>>("nnadapter_model_cache_token");
270 271 272 273 274 275

  lite_api::TargetType target_type;
  if (use_gpu) {
    target_type = TARGET(kCUDA);
  } else if (use_xpu) {
    target_type = TARGET(kXPU);
276 277
  } else if (use_nnadapter) {
    target_type = TARGET(kNNAdapter);
278
  } else {
W
Wilber 已提交
279 280 281
#ifdef PADDLE_WITH_ARM
    target_type = TARGET(kARM);
#else
282
    target_type = TARGET(kX86);
W
Wilber 已提交
283
#endif
284 285
  }

石晓伟 已提交
286
  paddle::lite_api::PrecisionType precision_type =
287 288
      enable_int8 ? PRECISION(kInt8) : PRECISION(kFloat);

石晓伟 已提交
289 290 291
  serialize_params(&config.param, scope, repetitive_params);
  config.model = program->Proto()->SerializeAsString();
  config.valid_places = {
292 293 294
      // Notice: The ordering here determines the device where the
      // input tensor of the Lite engine is located, and then affects
      // whether tensor sharing is feasible.
W
Wilber 已提交
295 296 297
      paddle::lite_api::Place({target_type, precision_type}),
      paddle::lite_api::Place({target_type, PRECISION(kInt64)}),
      paddle::lite_api::Place({target_type, PRECISION(kFloat)}),
298 299 300 301
#ifdef PADDLE_WITH_ARM
      paddle::lite_api::Place({TARGET(kARM), precision_type}),
      paddle::lite_api::Place({TARGET(kARM), PRECISION(kFloat)}),
#else
W
Wilber 已提交
302 303
      paddle::lite_api::Place({TARGET(kX86), precision_type}),
      paddle::lite_api::Place({TARGET(kX86), PRECISION(kFloat)}),
304 305
#endif
      paddle::lite_api::Place({TARGET(kHost), PRECISION(kFloat)}),
石晓伟 已提交
306
  };
W
Wilber 已提交
307
  config.cpu_math_library_num_threads = cpu_math_library_num_threads;
308
  config.xpu_l3_workspace_size = xpu_l3_workspace_size;
W
Wilber 已提交
309
  config.device_id = xpu_device_id;
W
Wilber 已提交
310 311 312 313 314
  config.locked = locked;
  config.autotune = autotune;
  config.autotune_file = autotune_file;
  config.precision = precision;
  config.adaptive_seqlen = adaptive_seqlen;
315 316 317 318 319 320 321 322 323 324 325
  // NNAdapter Related
  config.nnadapter_model_cache_dir = nnadapter_model_cache_dir;
  config.nnadapter_device_names = nnadapter_device_names;
  config.nnadapter_context_properties = nnadapter_context_properties;
  config.nnadapter_subgraph_partition_config_buffer =
      nnadapter_subgraph_partition_config_buffer;
  config.nnadapter_subgraph_partition_config_path =
      nnadapter_subgraph_partition_config_path;
  config.nnadapter_model_cache_buffer = nnadapter_model_cache_buffer;
  config.nnadapter_model_cache_token = nnadapter_model_cache_token;

石晓伟 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  if (dump_model) {
    lite::StrToBinaryFile("./model.bin", config.model);
    lite::StrToBinaryFile("./param.bin", config.param);
  }
  inference::Singleton<inference::lite::EngineManager>::Global().Create(
      unique_key, config);
}

void LiteSubgraphPass::BuildOperator(
    Node* merged_node, framework::ProgramDesc* global_program,
    std::vector<std::string>* repetitive_params) const {
  framework::ProgramDesc engine_program;

  const std::string id = std::to_string(Get<int>("predictor_id"));
  const std::vector<std::string> input_names =
      lite::IOVarsFilter(merged_node->inputs);
  const std::vector<std::string> output_names =
      lite::IOVarsFilter(merged_node->outputs);
  const std::string unique_key = lite::UniqueKey(input_names, output_names, id);

  lite::OrganizeProgram(merged_node, global_program, &engine_program,
                        repetitive_params);
  SetUpEngine(&engine_program, *repetitive_params, unique_key);

  auto* op_desc = merged_node->Op();
  op_desc->SetInput("Xs", input_names);
  op_desc->SetOutput("Ys", output_names);
  op_desc->SetType("lite_engine");
  op_desc->SetAttr("engine_key", unique_key);
  op_desc->SetAttr("enable_int8", Get<bool>("enable_int8"));
  op_desc->SetAttr("use_gpu", Get<bool>("use_gpu"));
357
  op_desc->SetAttr("zero_copy", Get<bool>("zero_copy"));
石晓伟 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
}

void LiteSubgraphPass::ApplyImpl(framework::ir::Graph* graph) const {
  framework::ir::FusePassBase::Init("lite_subgraph_pass", graph);
  framework::ProgramDesc* global_program =
      Get<framework::ProgramDesc*>("program");

  auto& lite_ops_filter = Get<std::vector<std::string>>("lite_ops_filter");

  auto teller = [&lite_ops_filter](const Node* node) {
    if (!node->IsOp() || !node->Op())
      return false;
    else if (node->Op()->Type() == "feed" || node->Op()->Type() == "fetch")
      return false;
    else if (std::find(lite_ops_filter.begin(), lite_ops_filter.end(),
                       node->Op()->Type()) != lite_ops_filter.end())
      return false;
    return inference::lite::OpTeller::Global().Tell(node->Op()->Type(),
                                                    *node->Op());
  };

  SubGraphFuser fuser(graph, teller, 0 /* min_subgraph_size */, "lite_engine");
  fuser();

  std::vector<std::string> repetitive_params;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && !Agent(node).subgraph()->empty()) {
      BuildOperator(node, global_program, &repetitive_params);
      std::unordered_set<const Node*> nodes2remove(
          Agent(node).subgraph()->begin(), Agent(node).subgraph()->end());
      framework::ir::GraphSafeRemoveNodes(graph, nodes2remove);
    }
  }

  std::unordered_set<const Node*> nodes2remove;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && Agent(node).deleted()) {
      nodes2remove.insert(node);
    }
  }
  framework::ir::GraphSafeRemoveNodes(graph, nodes2remove);
  graph->Set(framework::ir::kRepetitiveParamAttr,
             new std::vector<std::string>(repetitive_params));
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle

REGISTER_PASS(lite_subgraph_pass,
              paddle::inference::analysis::LiteSubgraphPass);