pool_with_index_op.cc 10.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20 21
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Out(Output) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Mask(Output) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
45
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
46

C
fix doc  
chengduoZH 已提交
47
    if (ctx->Attrs().Get<bool>("globalPooling")) {
C
chengduoZH 已提交
48 49 50 51 52 53
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
54
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
55
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
56
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
57
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
58
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
74
  void InferShape(framework::InferShapeContext *ctx) const override {
75
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
76
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
77 78
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
79 80 81 82 83 84 85 86 87 88 89
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
C
chengduoZH 已提交
90
        "(Tensor) The input tensor of pooling operator. "
C
chengduoZH 已提交
91 92 93
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
    AddOutput("Out",
C
chengduoZH 已提交
94
              "(Tensor) The output tensor of pooling operator."
C
chengduoZH 已提交
95 96 97 98
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of image.");
C
chengduoZH 已提交
99
    AddOutput("Mask",
C
chengduoZH 已提交
100
              "(Tensor) The Mask tensor of pooling operator."
C
chengduoZH 已提交
101 102 103 104
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is the number of channels, H and W "
              "is the height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
105 106

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
107
        "ksize",
C
fix doc  
chengduoZH 已提交
108 109
        "(vector ), the pooling window size(height, width) of pooling operator."
        "If globalPooling = true, ksize is ignored and need not be "
C
chengduoZH 已提交
110
        "specified.");  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
111
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
112 113 114
    AddAttr<bool>("globalPooling",
                  "(bool default: false), whether to use the global pooling."
                  "If globalPooling = true, ksize is ignored.")
C
chengduoZH 已提交
115
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
116 117 118
    AddAttr<std::vector<int>>(
        "strides",
        "(vector, default:{1, 1}), strides(height, width) of pooling operator.")
C
chengduoZH 已提交
119
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
120
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
121 122
    AddAttr<std::vector<int>>(
        "paddings",
C
fix doc  
chengduoZH 已提交
123
        "(vector defalut:{0,0}), paddings(height, width) of pooling operator.")
C
chengduoZH 已提交
124
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
125
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
126 127

    AddComment(R"DOC(
C
chengduoZH 已提交
128 129 130 131 132 133
The maxPooling2d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
       X shape: (N, C, H_in, W_in)
  Output:
       Out shape: (N, C, H_out, W_out)
       Mask shape: (N, C, H_out, W_out)
  where
       H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
C
chengduoZH 已提交
145 146 147 148 149 150 151 152 153 154 155
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
C
chengduoZH 已提交
156
        "(Tensor) The input tensor of pooling operator. "
C
chengduoZH 已提交
157 158 159 160
        "The format of input tensor is NCDHW. Where N is batch size, C is "
        "the number of channels, D, H and W is the depth, height and width of "
        "image.");
    AddOutput("Out",
C
chengduoZH 已提交
161
              "(Tensor) The output tensor of pooling operator."
C
chengduoZH 已提交
162 163 164 165
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is "
              "the number of channels, D, H and W is the depth, height and "
              "width of image.");
C
chengduoZH 已提交
166
    AddOutput("Mask",
C
chengduoZH 已提交
167
              "(Tensor) The Mask tensor of pooling operator."
C
chengduoZH 已提交
168 169 170 171
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is the number of channels, D, H and W "
              "is the depth, height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
172 173

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
174
        "ksize",
C
fix doc  
chengduoZH 已提交
175 176 177
        "(vector ), the pooling window size(depth, height, width) of pooling "
        "operator."
        "If globalPooling = true, ksize is ignored and need not be "
C
chengduoZH 已提交
178
        "specified.");  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
179
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
180 181 182
    AddAttr<bool>("globalPooling",
                  "(bool default: false), whether to use the global pooling."
                  "If globalPooling = true, ksize is ignored.")
C
chengduoZH 已提交
183
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
184 185 186
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1,1,1}), strides(depth, "
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
187
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
188 189 190 191
    // TypedAttrChecker don't support vector type.)
    AddAttr<std::vector<int>>("paddings",
                              "(vector defalut:{0,0,0}), paddings(depth, "
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
192
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
193
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
194

C
chengduoZH 已提交
195
    AddComment(R"DOC(
C
chengduoZH 已提交
196 197 198 199 200 201
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
202 203 204 205 206 207 208 209 210 211 212 213
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
       X shape: (N, C, D_in, H_in, W_in)
  Output:
       Out shape: (N, C, D_out, H_out, W_out)
       Mask shape: (N, C, D_out, H_out, W_out)
  where
       D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
214 215 216
)DOC");
  }
};
C
chengduoZH 已提交
217

C
chengduoZH 已提交
218 219 220 221 222
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

C
chengduoZH 已提交
223 224
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
C
chengduoZH 已提交
225 226 227
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
228
    max_pool2d_with_index,
C
chengduoZH 已提交
229 230
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
231
    max_pool2d_with_index_grad,
C
chengduoZH 已提交
232 233
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)

C
chengduoZH 已提交
234 235
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
C
chengduoZH 已提交
236 237 238
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
239
    max_pool3d_with_index,
C
chengduoZH 已提交
240 241
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
242
    max_pool3d_with_index_grad,
C
chengduoZH 已提交
243
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)