test_dist_fleet_base.py 11.7 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16 17 18
"""
    high level unit test for distribute fleet.
"""
19

T
tangwei12 已提交
20 21
import os
import sys
22
import subprocess
T
tangwei12 已提交
23

24 25 26 27
import argparse
from contextlib import closing
import socket
import time
28
import tempfile
29
import unittest
T
tangwei12 已提交
30 31 32 33

import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
34
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
T
tangwei12 已提交
35

C
Chengmo 已提交
36 37
__all__ = ['FleetDistRunnerBase', 'TestFleetBase', 'runtime_main']

T
tangwei12 已提交
38 39
RUN_STEP = 5
LEARNING_RATE = 0.01
40
DIST_UT_PORT = 0
T
tangwei12 已提交
41 42 43


class FleetDistRunnerBase(object):
44 45 46 47 48 49
    """
        run_pserver,run_trainer : after init role, using transpiler split program
        net : implment by child class, the network of model
        do training : exe run program
    """

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    def build_role(self, args):
        if args.role.upper() == "PSERVER":
            role = role_maker.UserDefinedRoleMaker(
                current_id=args.current_id,
                role=role_maker.Role.SERVER,
                worker_num=args.trainers,
                server_endpoints=args.endpoints.split(","))
        else:
            role = role_maker.UserDefinedRoleMaker(
                current_id=args.current_id,
                role=role_maker.Role.WORKER,
                worker_num=args.trainers,
                server_endpoints=args.endpoints.split(","))
        return role

    def build_strategy(self, args):
1
123malin 已提交
66 67 68 69 70 71 72 73 74 75
        self.strategy = None
        if args.mode == "async":
            self.strategy = StrategyFactory.create_async_strategy()
        elif args.mode == "sync":
            self.strategy = StrategyFactory.create_sync_strategy()
        elif args.mode == "half_async":
            self.strategy = StrategyFactory.create_half_async_strategy()
        elif args.mode == "geo":
            self.strategy = StrategyFactory.create_geo_strategy(
                args.geo_sgd_need_push_nums)
76 77 78 79 80 81 82 83 84 85 86
        self.dump_param = os.getenv("dump_param", "").split(",")
        self.dump_fields = os.getenv("dump_fields", "").split(",")
        self.dump_fields_path = os.getenv("dump_fields_path", "")
        debug = int(os.getenv("Debug", "0"))
        if debug:
            self.strategy.set_debug_opt({
                "dump_param": self.dump_param,
                "dump_fields": self.dump_fields,
                "dump_fields_path": self.dump_fields_path
            })

1
123malin 已提交
87 88
        return self.strategy

89
    def build_optimizer(self, avg_cost, strategy):
C
Chengmo 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
        use_grad_clip = int(os.getenv('GRAD_CLIP', 0))
        if use_grad_clip:
            # 1: clip_by_value; 2: clip_by_norm; 3:clip_by_global_norm
            if use_grad_clip == 1:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByValue(2.0))
            elif use_grad_clip == 2:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByNorm(2.0))
            elif use_grad_clip == 3:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByGlobalNorm(2.0))

103 104 105 106 107 108 109 110 111 112
        use_decay = int(os.getenv("DECAY", "0"))
        if use_decay:
            optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=LEARNING_RATE,
                    decay_steps=500,
                    decay_rate=0.969,
                    staircase=True))
        else:
            optimizer = fluid.optimizer.SGD(LEARNING_RATE)
T
tangwei12 已提交
113 114 115
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

116 117 118
    def run_pserver(self, args):
        fleet.init(self.build_role(args))
        strategy = self.build_strategy(args)
119
        avg_cost = self.net(args)
120 121
        self.build_optimizer(avg_cost, strategy)

T
tangwei12 已提交
122 123 124
        fleet.init_server()
        fleet.run_server()

1
123malin 已提交
125
    def run_dataset_trainer(self, args):
126 127
        fleet.init(self.build_role(args))
        strategy = self.build_strategy(args)
128
        avg_cost = self.net(args)
129
        self.build_optimizer(avg_cost, strategy)
1
123malin 已提交
130 131 132
        out = self.do_dataset_training(fleet)

    def run_pyreader_trainer(self, args):
133 134
        fleet.init(self.build_role(args))
        strategy = self.build_strategy(args)
135
        avg_cost = self.net(args)
136
        self.build_optimizer(avg_cost, strategy)
1
123malin 已提交
137
        out = self.do_pyreader_training(fleet)
T
tangwei12 已提交
138

139
    def net(self, args, batch_size=4, lr=0.01):
T
tangwei12 已提交
140 141 142
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

1
123malin 已提交
143
    def do_dataset_training(self, fleet):
T
tangwei12 已提交
144
        raise NotImplementedError(
1
123malin 已提交
145 146 147 148 149
            "do_dataset_training should be implemented by child classes.")

    def do_pyreader_training(self, fleet):
        raise NotImplementedError(
            "do_pyreader_training should be implemented by child classes.")
T
tangwei12 已提交
150 151 152


class TestFleetBase(unittest.TestCase):
153 154 155 156 157
    """
        start_pserver,start_trainer : add start cmd to test
        run_cluster : using multi process to test distribute program
    """

T
tangwei12 已提交
158 159 160 161
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

    def setUp(self):
1
123malin 已提交
162 163
        self._mode = "sync"
        self._reader = "pyreader"
T
tangwei12 已提交
164 165 166
        self._trainers = 2
        self._pservers = 2
        self._port_set = set()
167 168 169 170 171 172 173 174 175 176 177 178 179 180

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())

T
tangwei12 已提交
181
        self._python_interp = sys.executable
182
        self._geo_sgd_need_push_nums = 5
C
Chengmo 已提交
183
        self._grad_clip_mode = 0
T
tangwei12 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        self._setup_config()

    def _find_free_port(self):
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _start_pserver(self, cmd, required_envs):
        ps0_cmd, ps1_cmd = cmd.format(0), cmd.format(1)

202 203
        ps0_pipe = open(tempfile.gettempdir() + "/ps0_err.log", "wb+")
        ps1_pipe = open(tempfile.gettempdir() + "/ps1_err.log", "wb+")
T
tangwei12 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        ps0_proc = subprocess.Popen(
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
        ps1_proc = subprocess.Popen(
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe

    def _start_trainer(self, cmd, required_envs):
        tr0_cmd, tr1_cmd = cmd.format(0), cmd.format(1)

220 221
        tr0_pipe = open(tempfile.gettempdir() + "/tr0_err.log", "wb+")
        tr1_pipe = open(tempfile.gettempdir() + "/tr1_err.log", "wb+")
T
tangwei12 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=required_envs)
        tr1_proc = subprocess.Popen(
            tr1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=required_envs)

        return tr0_proc, tr1_proc, tr0_pipe, tr1_pipe

    def _run_cluster(self, model, envs):
237
        env = {'GRAD_CLIP': str(self._grad_clip_mode)}
238 239 240 241
        python_path = self._python_interp
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            python_path += " -m coverage run --branch -p"
242
        env.update(envs)
T
tangwei12 已提交
243

1
123malin 已提交
244 245 246
        tr_cmd = "{0} {1} --role trainer --endpoints {2} --current_id {{}} --trainers {3} --mode {4} --geo_sgd_need_push_nums {5} --reader {6}".format(
            python_path, model, self._ps_endpoints, self._trainers, self._mode,
            self._geo_sgd_need_push_nums, self._reader)
T
tangwei12 已提交
247

1
123malin 已提交
248 249 250
        ps_cmd = "{0} {1} --role pserver --endpoints {2} --current_id {{}} --trainers {3} --mode {4} --geo_sgd_need_push_nums {5} --reader {6}".format(
            python_path, model, self._ps_endpoints, self._trainers, self._mode,
            self._geo_sgd_need_push_nums, self._reader)
251

T
tangwei12 已提交
252 253 254 255 256 257 258 259 260 261
        # Run dist train to compare with local results
        ps0, ps1, ps0_pipe, ps1_pipe = self._start_pserver(ps_cmd, env)
        tr0, tr1, tr0_pipe, tr1_pipe = self._start_trainer(tr_cmd, env)

        # Wait until trainer process terminate
        while True:
            stat0 = tr0.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
262

T
tangwei12 已提交
263 264 265 266 267 268 269 270 271
        while True:
            stat1 = tr1.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

        tr0_out, tr0_err = tr0.communicate()
        tr1_out, tr1_err = tr1.communicate()

272 273 274 275 276 277
        tr0_ret = tr0.returncode
        tr1_ret = tr0.returncode

        self.assertEqual(tr0_ret, 0, "something wrong in tr0, please check")
        self.assertEqual(tr1_ret, 0, "something wrong in tr1, please check")

T
tangwei12 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()

        ps0.terminate()
        ps1.terminate()

        return 0, 0

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={}):
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_rpc_deadline": "5000",  # 5sec to fail fast
            "http_proxy": ""
        }

        required_envs.update(need_envs)

        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"

        tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)


def runtime_main(test_class):
    parser = argparse.ArgumentParser(description='Run Fleet test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
    parser.add_argument('--current_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
1
123malin 已提交
318
    parser.add_argument('--mode', type=str, required=False, default='geo')
319 320
    parser.add_argument(
        '--geo_sgd_need_push_nums', type=int, required=False, default=2)
1
123malin 已提交
321
    parser.add_argument('--reader', type=str, required=False, default='dataset')
T
tangwei12 已提交
322 323 324 325 326 327
    args = parser.parse_args()

    model = test_class()
    if args.role == "pserver":
        model.run_pserver(args)
    else:
1
123malin 已提交
328 329 330 331
        if args.reader == "dataset":
            model.run_dataset_trainer(args)
        else:
            model.run_pyreader_trainer(args)