crop_tensor_op.h 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h"

namespace paddle {
namespace operators {  // Internal

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using framework::Tensor;

inline std::vector<int> get_new_data(
    const std::vector<const Tensor*>& list_new_tensor) {
  // get tensor from
  std::vector<int> vec_new_data;
  for (size_t i = 0; i < list_new_tensor.size(); ++i) {
    auto tensor = list_new_tensor[i];
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
38 39 40 41
        platform::errors::InvalidArgument(
            "The tensor's shape in list of Op(crop_tensor) should be [1], "
            "but the value received is %d.",
            tensor->dims()));
42 43 44 45 46 47 48 49 50 51 52 53 54 55
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_data.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_data.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_data;
}

static framework::DDim ValidateShape(const std::vector<int> shape,
56
                                     const std::vector<int> offsets,
57 58 59 60 61
                                     const framework::DDim& in_dims) {
  auto in_dim_size = in_dims.size();
  auto shape_size = shape.size();
  PADDLE_ENFORCE_EQ(
      in_dim_size, shape_size,
62 63 64 65
      platform::errors::InvalidArgument(
          "The number of elements (%d) for shape of Op(crop_tensor) should be "
          "equal to the number of dimensions (%d) of the input tensor.",
          shape_size, in_dim_size));
66 67
  std::vector<int64_t> output_shape(shape.size(), 0);
  for (size_t i = 0; i < shape.size(); ++i) {
68
    if (shape[i] <= 0 && in_dims[i] > 0) {
69 70 71 72 73 74 75 76 77 78
      PADDLE_ENFORCE_NE(shape[i], 0,
                        platform::errors::InvalidArgument(
                            "The value (%d) of the %uth element for shape of "
                            "Op(crop_tensor) should not be zero.",
                            shape[i], i));
      PADDLE_ENFORCE_EQ(shape[i], -1, platform::errors::InvalidArgument(
                                          "When the value (%d) of the %uth "
                                          "element for shape of Op(crop_tensor)"
                                          " is negative, only -1 is supported.",
                                          shape[i], i));
79
      output_shape[i] = in_dims[i] - offsets[i];
80
    } else {
81
      output_shape[i] = static_cast<int64_t>(shape[i]);
82 83 84 85 86 87 88 89 90 91 92 93
    }
  }

  return framework::make_ddim(output_shape);
}

static std::vector<int> GetShape(const framework::ExecutionContext& ctx) {
  std::vector<int> res;
  int rank = ctx.Input<Tensor>("X")->dims().size();
  auto list_new_shape_tensor = ctx.MultiInput<framework::Tensor>("ShapeTensor");
  if (list_new_shape_tensor.size() > 0) {
    // have offsets tensor list
94 95 96 97 98 99 100
    PADDLE_ENFORCE_EQ(
        list_new_shape_tensor.size(), rank,
        platform::errors::InvalidArgument(
            "The number of tensors (%d) for the input ShapeTensor of "
            "Op(crop_tensor) must be equal to the number of "
            "dimensions (%d) of the input.",
            list_new_shape_tensor.size(), rank));
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    res = get_new_data(list_new_shape_tensor);

    return res;
  }

  auto* shape_tensor = ctx.HasInput("Shape")
                           ? ctx.Input<framework::LoDTensor>("Shape")
                           : nullptr;
  if (shape_tensor) {
    auto* shape_data = shape_tensor->data<int>();
    framework::Tensor cpu_shape_tensor;
    if (platform::is_gpu_place(shape_tensor->place())) {
      TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
      shape_data = cpu_shape_tensor.data<int>();
    }
    res = std::vector<int>(shape_data, shape_data + shape_tensor->numel());
  }

  return res;
}

static std::vector<int> GetOffsets(const framework::ExecutionContext& ctx) {
  std::vector<int> res;
  int rank = ctx.Input<Tensor>("X")->dims().size();
  auto list_new_offsets_tensor =
      ctx.MultiInput<framework::Tensor>("OffsetsTensor");
  if (list_new_offsets_tensor.size() > 0) {
    // have offsets tensor list
    res = get_new_data(list_new_offsets_tensor);

    return res;
  }

  if (ctx.HasInput("Offsets")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<std::vector<int>>("offsets").empty(), true,
137 138 139
        platform::errors::InvalidArgument(
            "Input 'Offsets' and attribute 'offsets' for Op(crop_tensor) "
            "cannot be used at the same time."));
140
    const auto* offsets_tensor = ctx.Input<Tensor>("Offsets");
141 142 143 144 145 146 147 148 149 150 151
    PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1,
                      platform::errors::InvalidArgument(
                          "The number of dimensions of input 'Offsets' must "
                          "be 1, but the value received is: %d.",
                          offsets_tensor->dims().size()));
    PADDLE_ENFORCE_EQ(rank, offsets_tensor->dims()[0],
                      platform::errors::InvalidArgument(
                          "The number of elements (%d) for "
                          "input 'Offsets' must be equal to "
                          "the number of dimensions (%d) of the input tensor.",
                          offsets_tensor->dims()[0], rank));
152 153 154 155 156 157 158 159 160 161 162 163 164 165
    const int* offsets_data;
    framework::Tensor cpu_tmp_tensor;
    if (platform::is_cpu_place(offsets_tensor->place())) {
      offsets_data = offsets_tensor->data<int>();
    } else {
      framework::TensorCopySync(*offsets_tensor, platform::CPUPlace(),
                                &cpu_tmp_tensor);
      offsets_data = cpu_tmp_tensor.data<int>();
    }
    res = std::vector<int>(offsets_data, offsets_data + rank);
  } else {
    res = ctx.Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
        rank, static_cast<int>(res.size()),
166 167 168 169 170
        platform::errors::InvalidArgument("The number of elements (%d) for "
                                          "input 'Offsets' must be equal to "
                                          "the number of dimensions (%d) "
                                          "of the input tensor.",
                                          static_cast<int>(res.size()), rank));
171 172 173 174 175 176 177 178 179 180 181 182 183
  }
  return res;
}

template <typename DeviceContext, typename T, size_t D>
void CropTensorFunction(const framework::ExecutionContext& context) {
  auto* x = context.Input<Tensor>("X");
  auto* out = context.Output<Tensor>("Out");
  auto x_dims = x->dims();
  auto out_dims = out->dims();

  // get shape from Input(ShapeTensor) of Input(Shape)
  std::vector<int> shape = GetShape(context);
T
tianshuo78520a 已提交
184
  // out_dims set by arrt(shape)
185
  if (shape.size() == 0) {
186
    for (int i = 0; i < out_dims.size(); ++i) {
187 188 189 190 191
      shape.push_back(out_dims[i]);
    }
  }

  auto offsets = GetOffsets(context);
192 193
  out_dims = ValidateShape(shape, offsets, x->dims());
  out->mutable_data<T>(out_dims, context.GetPlace());
194
  for (size_t i = 0; i < offsets.size(); ++i) {
195 196 197 198 199 200 201
    PADDLE_ENFORCE_LE(offsets[i] + shape[i], x_dims[i],
                      platform::errors::InvalidArgument(
                          "The sum of the %uth elements of "
                          "offsets (%d) and shape (%d) of Op(crop_tensor) "
                          "should be less than or "
                          "equal to the size of %uth dimension of the input.",
                          i, offsets[i], shape[i], i));
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  }

  auto x_tensor = EigenTensor<T, D>::From(*x);
  auto out_tensor = EigenTensor<T, D>::From(*out);
  Eigen::array<int, D> e_offsets;
  Eigen::array<int, D> e_shape;
  for (size_t i = 0; i < D; ++i) {
    e_offsets[i] = offsets[i];
    e_shape[i] = out->dims()[i];
  }
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  out_tensor.device(place) = x_tensor.slice(e_offsets, e_shape);
}

template <typename DeviceContext, typename T>
class CropTensorKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    int rank = context.Input<Tensor>("X")->dims().size();
222 223 224 225 226 227 228 229 230 231 232 233 234
    PADDLE_ENFORCE_GE(
        rank, 1,
        platform::errors::InvalidArgument(
            "The number of dimensions of the input 'x' for "
            "Op(crop_tensor) must be greater than or equal to 1, but the "
            "value received is %d.",
            rank));
    PADDLE_ENFORCE_LE(
        rank, 6, platform::errors::InvalidArgument(
                     "The number of dimensions of the input 'x' for "
                     "Op(crop_tensor) must be less than or equal to 6, but the "
                     "value received is %d.",
                     rank));
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    switch (rank) {
      case 1:
        CropTensorFunction<DeviceContext, T, 1>(context);
        break;
      case 2:
        CropTensorFunction<DeviceContext, T, 2>(context);
        break;
      case 3:
        CropTensorFunction<DeviceContext, T, 3>(context);
        break;
      case 4:
        CropTensorFunction<DeviceContext, T, 4>(context);
        break;
      case 5:
        CropTensorFunction<DeviceContext, T, 5>(context);
        break;
      case 6:
        CropTensorFunction<DeviceContext, T, 6>(context);
        break;
    }
  }
};

template <typename DeviceContext, typename T, size_t D>
void CropTensorGradFunction(const framework::ExecutionContext& context) {
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
  auto* x = context.Input<Tensor>("X");
  if (d_x != nullptr) {
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
    d_x->mutable_data<T>(x->dims(), context.GetPlace());
    auto offsets = GetOffsets(context);
    Eigen::array<std::pair<int, int>, D> paddings;
    for (size_t i = 0; i < D; ++i) {
      paddings[i].first = offsets[i];
      paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
    }
    auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
    auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
    d_x_tensor.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
        d_out_tensor.pad(paddings, 0);
  }
}

template <typename DeviceContext, typename T>
class CropTensorGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    size_t rank =
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
285 286 287 288 289 290 291 292 293 294 295 296 297 298
    PADDLE_ENFORCE_GE(
        rank, 1,
        platform::errors::InvalidArgument(
            "The number of dimensions of the input 'Out@GRAD' for "
            "Op(crop_tensor_grad) must be greater than or equal to 1, but the "
            "value received is %d.",
            rank));
    PADDLE_ENFORCE_LE(
        rank, 6,
        platform::errors::InvalidArgument(
            "The number of dimensions of the input 'Out@GRAD' for "
            "Op(crop_tensor_grad) must be less than or equal to 6, but the "
            "value received is %d.",
            rank));
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    switch (rank) {
      case 1:
        CropTensorGradFunction<DeviceContext, T, 1>(context);
        break;
      case 2:
        CropTensorGradFunction<DeviceContext, T, 2>(context);
        break;
      case 3:
        CropTensorGradFunction<DeviceContext, T, 3>(context);
        break;
      case 4:
        CropTensorGradFunction<DeviceContext, T, 4>(context);
        break;
      case 5:
        CropTensorGradFunction<DeviceContext, T, 5>(context);
        break;
      case 6:
        CropTensorGradFunction<DeviceContext, T, 6>(context);
        break;
    }
  }
};

}  // namespace operators
}  // namespace paddle