heter_context.h 9.0 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
Thunderbrook 已提交
17
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
18

T
Thunderbrook 已提交
19
#include <ThreadPool.h>
Y
yaoxuefeng 已提交
20
#include <algorithm>
T
Thunderbrook 已提交
21 22 23 24
#include <map>
#include <unordered_map>
#include <vector>

T
Thunderbrook 已提交
25
#ifdef PADDLE_WITH_PSLIB
26
#include "common/common_value.h"  // NOLINT
T
Thunderbrook 已提交
27 28 29
#endif

#ifdef PADDLE_WITH_PSCORE
30
#include "paddle/fluid/distributed/ps/table/depends/feature_value.h"
T
Thunderbrook 已提交
31 32
#endif

33
#include "paddle/fluid/distributed/ps/thirdparty/round_robin.h"
T
Thunderbrook 已提交
34 35 36 37 38 39 40 41
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/scope.h"

namespace paddle {
namespace framework {

class HeterContext {
 public:
T
Thunderbrook 已提交
42
  virtual ~HeterContext() {
43 44 45 46 47 48 49 50 51 52 53 54
    if (!multi_mf_dim_) {
      for (size_t i = 0; i < mutex_.size(); ++i) {
        delete mutex_[i];
      }
      mutex_.clear();
    } else {
      for (size_t i = 0; i < dim_mutex_.size(); ++i) {
        for (size_t j = 0; j < dim_mutex_[i].size(); j++) {
          delete dim_mutex_[i][j];
        }
        dim_mutex_[i].clear();
      }
55 56
    }
  }
T
Thunderbrook 已提交
57 58
  Scope* scope_{nullptr};
  std::vector<std::vector<FeatureKey>> feature_keys_;
59
  std::vector<std::vector<std::vector<FeatureKey>>> feature_dim_keys_;
T
Thunderbrook 已提交
60
  std::vector<std::vector<std::vector<FeatureKey>>> device_task_keys_;
61

T
Thunderbrook 已提交
62
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
63
  std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> value_ptr_;
T
Thunderbrook 已提交
64 65
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      device_task_ptr_;
66 67 68 69
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      value_dim_ptr_;
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      device_dim_ptr_;
T
Thunderbrook 已提交
70 71
#endif
#ifdef PADDLE_WITH_PSCORE
72 73
  std::vector<std::vector<paddle::distributed::FixedFeatureValue*>> value_ptr_;
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
74
      value_dim_ptr_;
T
Thunderbrook 已提交
75 76
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
      device_task_ptr_;
77
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
78
      device_dim_ptr_;
T
Thunderbrook 已提交
79
#endif
80 81
  std::vector<std::vector<FeatureValue>> device_values_;
  std::vector<std::vector<FeatureKey>> device_keys_;
82 83
  std::vector<std::vector<std::vector<FeatureKey>>> device_dim_keys_;
  std::vector<std::vector<std::vector<FeatureValue>>> device_dim_values_;
84
  std::vector<std::mutex*> mutex_;
85 86
  std::vector<std::vector<std::mutex*>> dim_mutex_;
  int multi_mf_dim_ = 0;
87

Y
yaoxuefeng 已提交
88
  uint32_t shard_num_ = 37;
T
Thunderbrook 已提交
89 90 91 92 93 94 95
  uint64_t size() {
    uint64_t total_size = 0;
    for (auto& keys : feature_keys_) {
      total_size += keys.size();
    }
    return total_size;
  }
Y
yaoxuefeng 已提交
96 97
  void SetShardNum(uint32_t shard_num) { shard_num_ = shard_num; }
  uint32_t ShardNum() { return shard_num_; }
98 99 100 101
  void init(int shard_num, int device_num) {
    shard_num_ = shard_num;
    feature_keys_.resize(shard_num_);
    value_ptr_.resize(shard_num_);
T
Thunderbrook 已提交
102 103 104 105 106 107
    device_task_ptr_.resize(shard_num_);
    device_task_keys_.resize(shard_num_);
    for (size_t i = 0; i < device_task_ptr_.size(); i++) {
      device_task_ptr_[i].resize(device_num);
      device_task_keys_[i].resize(device_num);
    }
108 109 110 111 112 113 114 115

    device_values_.resize(device_num);
    device_keys_.resize(device_num);
    mutex_.resize(device_num);
    for (size_t i = 0; i < mutex_.size(); ++i) {
      mutex_[i] = new std::mutex();
    }
  }
116

117 118 119 120 121 122
  void init(int shard_num, int device_num, int dim_num) {
    shard_num_ = shard_num;
    feature_keys_.resize(shard_num_);
    feature_dim_keys_.resize(shard_num_);
    value_ptr_.resize(shard_num_);
    value_dim_ptr_.resize(shard_num_);
T
Thunderbrook 已提交
123 124 125 126 127 128
    device_task_ptr_.resize(shard_num_);
    device_task_keys_.resize(shard_num_);
    for (size_t i = 0; i < device_task_ptr_.size(); i++) {
      device_task_ptr_[i].resize(device_num);
      device_task_keys_[i].resize(device_num);
    }
129 130 131 132 133 134 135 136
    for (size_t i = 0; i < feature_dim_keys_.size(); i++) {
      feature_dim_keys_[i].resize(dim_num);
      value_dim_ptr_[i].resize(dim_num);
      if (i == 0) {
        for (int j = 0; j < dim_num; j++) {
          feature_dim_keys_[i][j].push_back(0);
        }
      }
137
    }
138 139 140 141 142 143 144 145 146 147
    device_values_.resize(device_num);
    device_dim_values_.resize(device_num);
    device_keys_.resize(device_num);

    device_dim_keys_.resize(device_num);
    device_dim_ptr_.resize(device_num);
    mutex_.resize(device_num);
    dim_mutex_.resize(device_num);
    for (size_t i = 0; i < mutex_.size(); ++i) {
      mutex_[i] = new std::mutex();
148
    }
149 150 151 152 153
    for (size_t i = 0; i < dim_mutex_.size(); ++i) {
      dim_mutex_[i].resize(dim_num);
      for (int j = 0; j < dim_num; j++) {
        dim_mutex_[i][j] = new std::mutex();
      }
154
    }
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    multi_mf_dim_ = dim_num;
  }

  void Reset() {
    if (!multi_mf_dim_) {
      for (size_t i = 0; i < feature_keys_.size(); ++i) {
        feature_keys_[i].clear();
      }
      for (size_t i = 0; i < value_ptr_.size(); ++i) {
        value_ptr_[i].clear();
      }
      for (size_t i = 0; i < device_values_.size(); ++i) {
        device_values_[i].clear();
      }
      for (size_t i = 0; i < device_keys_.size(); ++i) {
        device_keys_[i].clear();
      }
T
Thunderbrook 已提交
172 173 174 175 176 177
      for (size_t i = 0; i < device_task_ptr_.size(); ++i) {
        for (size_t j = 0; j < device_task_ptr_[i].size(); ++j) {
          device_task_ptr_[i][j].clear();
          device_task_keys_[i][j].clear();
        }
      }
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    } else {
      VLOG(3) << "Reset gpu task with dynamic mf dimention";
      for (size_t i = 0; i < feature_dim_keys_.size(); i++) {
        for (size_t j = 0; j < feature_dim_keys_[i].size(); j++) {
          feature_dim_keys_[i][j].clear();
        }
      }
      for (size_t i = 0; i < value_dim_ptr_.size(); i++) {
        for (size_t j = 0; j < value_dim_ptr_[i].size(); j++) {
          value_dim_ptr_[i][j].clear();
        }
      }

      for (size_t i = 0; i < device_dim_keys_.size(); i++) {
        for (size_t j = 0; j < device_dim_keys_[i].size(); j++) {
          device_dim_keys_[i][j].clear();
        }
      }
      for (size_t i = 0; i < device_dim_ptr_.size(); i++) {
        for (size_t j = 0; j < device_dim_ptr_[i].size(); j++) {
          device_dim_ptr_[i][j].clear();
        }
      }
201 202
    }
  }
203 204
  void batch_add_keys(
      const std::vector<std::unordered_set<uint64_t>>& thread_keys) {
Y
yaoxuefeng 已提交
205 206 207 208 209 210
    assert(thread_keys.size() == feature_keys_.size());

    for (uint32_t i = 0; i < shard_num_; i++) {
      int idx = 0;
      idx = feature_keys_[i].size();
      feature_keys_[i].resize(feature_keys_[i].size() + thread_keys[i].size());
211 212
      std::copy(thread_keys[i].begin(), thread_keys[i].end(),
                feature_keys_[i].begin() + idx);
Y
yaoxuefeng 已提交
213 214
    }
  }
215

216
  void batch_add_keys(int shard_num,
217
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
218 219 220 221 222 223 224
    int idx = feature_keys_[shard_num].size();
    feature_keys_[shard_num].resize(feature_keys_[shard_num].size() +
                                    shard_keys.size());
    std::copy(shard_keys.begin(), shard_keys.end(),
              feature_keys_[shard_num].begin() + idx);
  }

225 226 227 228 229 230 231 232 233
  void batch_add_keys(int shard_num, int dim_id,
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
    int idx = feature_dim_keys_[shard_num][dim_id].size();
    feature_dim_keys_[shard_num][dim_id].resize(
        feature_dim_keys_[shard_num][dim_id].size() + shard_keys.size());
    std::copy(shard_keys.begin(), shard_keys.end(),
              feature_dim_keys_[shard_num][dim_id].begin() + idx);
  }

Y
yaoxuefeng 已提交
234 235 236 237 238 239 240 241 242
  void UniqueKeys() {
    std::vector<std::thread> threads;
    auto unique_func = [this](int i) {
      auto& cur_keys = feature_keys_[i];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    auto unique_dynamic_mf_func = [this](int i, int j) {
      auto& cur_keys = feature_dim_keys_[i][j];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
    if (!multi_mf_dim_) {
      for (uint32_t i = 0; i < shard_num_; i++) {
        threads.push_back(std::thread(unique_func, i));
      }
    } else {
      for (uint32_t i = 0; i < shard_num_; i++) {
        for (int j = 0; j < multi_mf_dim_; j++) {
          threads.push_back(std::thread(unique_dynamic_mf_func, i, j));
        }
      }
      VLOG(3) << "heter_context unique keys with dynamic mf dimention";
Y
yaoxuefeng 已提交
261 262 263 264 265
    }
    for (std::thread& t : threads) {
      t.join();
    }
  }
T
Thunderbrook 已提交
266 267 268 269 270
};

}  // end namespace framework
}  // end namespace paddle
#endif