pybind.cc 20.8 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
29
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
30
#include "paddle/operators/cond_op.h"
31
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
32
#include "paddle/operators/net_op.h"
Q
qijun 已提交
33
#include "paddle/platform/enforce.h"
Q
qijun 已提交
34
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
35
#include "paddle/pybind/exception.h"
Q
qijun 已提交
36
#include "paddle/pybind/pybind.h"
37
#include "paddle/pybind/tensor_py.h"
38
#include "paddle/string/to_string.h"
39

D
Dong Zhihong 已提交
40 41
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
42
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
43 44
#endif

Q
Qiao Longfei 已提交
45 46 47
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

48
namespace paddle {
49
namespace pybind {
50 51 52
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
53 54
}

Q
QI JUN 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
73
bool IsCompileGPU() {
74
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
75 76 77 78 79 80
  return false;
#else
  return true;
#endif
}

81
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
82
  py::module m("core", "C++ core of PaddlePaddle");
83

84 85 86 87
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
88 89
  BindException(m);

90 91 92
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
93
      .def("get_dims",
94
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
95
      .def("set_dims",
Q
qijun 已提交
96
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
97
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
98 99
           })
      .def("alloc_float",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
102
           })
Q
qijun 已提交
103
      .def("alloc_float",
Y
Yu Yang 已提交
104
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
106 107
           })
      .def("alloc_int",
Y
Yu Yang 已提交
108
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
110
           })
Q
qijun 已提交
111
      .def("alloc_int",
Y
Yu Yang 已提交
112
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
113
             self.mutable_data<int>(place);
Q
qijun 已提交
114
           })
Y
Yu Yang 已提交
115 116
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
117
      .def("set", PyCPUTensorSetFromArray<double>)
118
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
119
      .def("set", PyCPUTensorSetFromArray<bool>)
120
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
121 122
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
123
      .def("set", PyCUDATensorSetFromArray<double>)
124
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
125
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
126
#endif
127
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
128 129 130 131 132
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
133

134
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
135 136
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
137 138 139
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
140
#ifndef PADDLE_WITH_CUDA
141
            new (&instance) LoDTensor(lod);
142
#else
Y
Yu Yang 已提交
143
             LoD new_lod;
144 145
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
146
             new (&instance) LoDTensor(new_lod);
147
#endif
148
          })
Y
Yu Yang 已提交
149
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
150
      .def("set_lod",
151
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
152
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
153
             self.set_lod(lod);
154
#else
Y
Yu Yang 已提交
155
             LoD new_lod;
156 157 158 159
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
160
           })
161
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
162
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
163
        return self.lod();
164 165 166 167 168
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
169
               [](Vector<size_t> item) ->
170 171 172 173 174 175 176 177
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
178 179
      });

Q
qijun 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
193 194 195 196 197 198 199 200 201
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
202 203 204 205 206 207 208 209 210 211 212
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
213

214
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
215 216 217

All parameter, weight, gradient are variables in Paddle.
)DOC")
218
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
219
      .def("set_int",
220 221
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
222 223 224 225 226 227 228
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
229
      .def("get_tensor",
230 231
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
232 233
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
234 235 236
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
237 238 239 240 241
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
242 243 244
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
245 246 247 248 249 250 251
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
252
      .def("get_net",
D
dongzhihong 已提交
253 254
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
255
           },
Y
Yu Yang 已提交
256
           py::return_value_policy::reference);
257

258
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
259
      .def("var",
260
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
261
             return self.Var(name);
Y
Yu Yang 已提交
262
           },
263
           py::return_value_policy::reference)
264
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
265
      .def(py::init<>())
266
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
267
           py::return_value_policy::reference)
Y
Yu Yang 已提交
268
      .def("drop_kids", &Scope::DropKids);
269

Y
Yu Yang 已提交
270 271
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
272 273
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
274 275 276 277 278 279 280 281 282 283
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
284 285
    return ret_values;
  });
286 287 288 289
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
290
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
291 292 293 294 295
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
296 297 298
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
299 300
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
301
  // clang-format off
Y
Yu Yang 已提交
302
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
303 304
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
305
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
306 307 308 309 310
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
311
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
312
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
313
#else
Q
qijun 已提交
314
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
315
#endif
Q
qijun 已提交
316
                  });
D
Dong Zhihong 已提交
317
// clang-format on
Q
qijun 已提交
318

D
Dong Zhihong 已提交
319 320 321
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
322 323 324
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
325

326 327 328
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
329

Y
Yu Yang 已提交
330 331 332 333 334 335 336 337 338 339 340
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
341 342 343 344 345 346 347 348 349
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
350
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
351 352 353 354 355 356
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
357
      .def("run",
358
           [](OperatorBase &self, const Scope &scope,
359 360 361 362
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
363 364 365 366 367 368 369
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
370 371
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
372
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
373
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
374 375 376 377
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
378

Y
Yu Yang 已提交
379 380 381 382 383 384 385
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
386 387
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
388 389 390 391
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
392

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

443 444 445 446 447 448 449 450 451 452
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
453
                    auto rnn_op = OpRegistry::CreateOp(desc);
454 455 456
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
457
      .def("set_step_unit",
458
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
459
               -> void { self.rnn.SetStepUnit(net.Clone()); })
460 461
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
462
               -> const TensorArray & { return self.rnn.state(name); })
463 464
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
465
               -> const TensorArray & { return self.rnn.step_input(name); })
466 467
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
468
               -> const TensorArray & { return self.rnn.step_output(name); });
469

Z
cond op  
zchen0211 已提交
470 471 472 473 474 475 476 477 478 479
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
480
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
481 482 483 484 485 486 487 488 489 490 491
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
492 493
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
494
      .def("run", &Executor::Run);
F
fengjiayi 已提交
495

496
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
497
  m.def("init_gflags", InitGflags);
498

Q
qijun 已提交
499
  m.def("is_compile_gpu", IsCompileGPU);
500
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
501
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
502

F
fengjiayi 已提交
503 504 505 506
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
507

Y
Yu Yang 已提交
508 509 510 511 512 513 514 515 516
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
534
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
535
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
536
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
Dong Zhihong 已提交
537
#endif
Y
Yu Yang 已提交
538

539
  return m.ptr();
L
Luo Tao 已提交
540
}
541
}  // namespace pybind
542
}  // namespace paddle