stat.py 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define statistical functions of a tensor
16

17
import numpy as np
Z
zhiboniu 已提交
18
from ..static import Variable
19
from ..framework import LayerHelper
Z
zhiboniu 已提交
20
from ..framework import core
21
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
22
from .search import where
L
Liufang Sang 已提交
23
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
import paddle
W
wanghuancoder 已提交
25
from paddle import _C_ops
26

27 28
__all__ = []

29 30 31 32 33 34

def mean(x, axis=None, keepdim=False, name=None):
    """
    Computes the mean of the input tensor's elements along ``axis``.

    Args:
35
        x (Tensor): The input Tensor with data type float32, float64.
36 37 38 39 40 41 42
        axis (int|list|tuple, optional): The axis along which to perform mean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), mean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, mean is
43
            calculated over all elements of ``x``. Default is None.
44
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
45
            in the output Tensor. If ``keepdim`` is True, the dimensions of
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of average along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

Z
zhupengyang 已提交
61 62 63 64 65 66
            x = paddle.to_tensor([[[1., 2., 3., 4.],
                                   [5., 6., 7., 8.],
                                   [9., 10., 11., 12.]],
                                  [[13., 14., 15., 16.],
                                   [17., 18., 19., 20.],
                                   [21., 22., 23., 24.]]])
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
            out1 = paddle.mean(x)
            # [12.5]
            out2 = paddle.mean(x, axis=-1)
            # [[ 2.5  6.5 10.5]
            #  [14.5 18.5 22.5]]
            out3 = paddle.mean(x, axis=-1, keepdim=True)
            # [[[ 2.5]
            #   [ 6.5]
            #   [10.5]]
            #  [[14.5]
            #   [18.5]
            #   [22.5]]]
            out4 = paddle.mean(x, axis=[0, 2])
            # [ 8.5 12.5 16.5]
    """

    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]

91 92 93 94 95
    if in_dygraph_mode():
        if reduce_all:
            axis = range(len(x.shape))
        return _C_ops.final_state_mean(x, axis, keepdim)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
96 97
        return _C_ops.reduce_mean(x, 'dim', axis, 'keep_dim', keepdim,
                                  'reduce_all', reduce_all)
98

S
sneaxiy 已提交
99 100
    check_variable_and_dtype(x, 'x/input',
                             ['uint16', 'float16', 'float32', 'float64'],
101
                             'mean/reduce_mean')
102 103 104 105
    check_type(axis, 'axis/dim', (int, list, tuple), 'mean/reduce_mean')
    if isinstance(axis, (list, tuple)):
        for item in axis:
            check_type(item, 'elements of axis/dim', (int), 'mean/reduce_mean')
106 107 108 109

    helper = LayerHelper('mean', **locals())
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
110 111 112 113
    helper.append_op(type='reduce_mean',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
114
    return out
115 116


117
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
118
    """
119
    Computes the variance of ``x`` along ``axis`` .
120 121

    Args:
122
        x (Tensor): The input Tensor with data type float32, float64.
123 124 125 126 127 128 129 130 131
        axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int). 
        
            - If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . 
            - If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . 
            - If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None.

        unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
132 133

    Returns:
134
        Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``.
135 136 137 138 139

    Examples:
        .. code-block:: python

            import paddle
140

Z
zhupengyang 已提交
141
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
142 143 144 145
            out1 = paddle.var(x)
            # [2.66666667]
            out2 = paddle.var(x, axis=1)
            # [1.         4.33333333]
146
    """
Z
zhiboniu 已提交
147
    if not paddle.in_dynamic_mode():
148 149 150 151
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')

    u = mean(x, axis, True, name)
    out = paddle.sum((x - u)**2, axis, keepdim=keepdim, name=name)
152

153 154
    n = paddle.cast(paddle.numel(x), x.dtype) \
        / paddle.cast(paddle.numel(out), x.dtype)
155
    if unbiased:
156 157 158 159 160
        one_const = paddle.ones([1], x.dtype)
        n = where(n > one_const, n - 1., one_const)
    out /= n
    return out

S
swtkiwi 已提交
161

162 163 164
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
    """
    Computes the standard-deviation of ``x`` along ``axis`` .
L
Liufang Sang 已提交
165 166

    Args:
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            standard-deviation calculations. ``axis`` should be int, list(int)
            or tuple(int). If ``axis`` is a list/tuple of dimension(s),
            standard-deviation is calculated along all element(s) of ``axis`` .
            ``axis`` or element(s) of ``axis`` should be in range [-D, D),
            where D is the dimensions of ``x`` . If ``axis`` or element(s) of
            ``axis`` is less than 0, it works the same way as :math:`axis + D` .
            If ``axis`` is None, standard-deviation is calculated over all
            elements of ``x``. Default is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the standard-deviation is calculated via the
            unbiased estimator. If ``unbiased`` is True,  the divisor used in
            the computation is :math:`N - 1`, where :math:`N` represents the
            number of elements along ``axis`` , otherwise the divisor is
            :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Liufang Sang 已提交
190 191

    Returns:
192 193 194
        Tensor, results of standard-deviation along ``axis`` of ``x``, with the
        same data type as ``x``.

L
Liufang Sang 已提交
195 196 197 198
    Examples:
        .. code-block:: python

            import paddle
199

Z
zhupengyang 已提交
200
            x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
201 202 203 204
            out1 = paddle.std(x)
            # [1.63299316]
            out2 = paddle.std(x, axis=1)
            # [1.       2.081666]
L
Liufang Sang 已提交
205
    """
Z
zhiboniu 已提交
206
    if not paddle.in_dynamic_mode():
207 208 209 210
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')

    out = var(**locals())
    return paddle.sqrt(out)
211 212 213 214 215


def numel(x, name=None):
    """
    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
216
    or a scalar value in imperative mode.
217 218 219 220 221 222 223 224 225 226

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.

    Returns:
        Tensor: The number of elements for the input Tensor.

    Examples:
        .. code-block:: python

227 228 229 230
            import paddle
            
            x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
            numel = paddle.numel(x) # 140
231 232 233


    """
Z
zhiboniu 已提交
234
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
235
        return _C_ops.size(x)
236 237 238 239 240 241 242 243

    if not isinstance(x, Variable):
        raise TypeError("x must be a Tensor in numel")
    helper = LayerHelper('numel', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
    helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
    return out
Z
zhulei 已提交
244 245


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
def nanmedian(x, axis=None, keepdim=True, name=None):
    r"""
    Compute the median along the specified axis, while ignoring NaNs.

    If the valid count of elements is a even number,
    the average value of both elements in the middle is calculated as the median.

    Args:
        x (Tensor): The input Tensor, it's data type can be int32, int64, float16, float32, float64.
        axis (None|int|list|tuple, optional):
            The axis along which to perform median calculations ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. The output dtype is the same as `x`.

    Examples:
        .. code-block:: python
            :name: nanmedian-example

            import paddle
            x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]])

            y1 = x.nanmedian()
            # y1 is [[2.]]

            y2 = x.nanmedian(0)
            # y2 is [[0.,  1.5, 2.5]]

            y3 = x.nanmedian(0, keepdim=False)
            # y3 is [0.,  1.5, 2.5]

            y4 = x.nanmedian((0, 1))
            # y4 is [[2.]]
    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")

    if isinstance(axis, (list, tuple)) and len(axis) == 0:
        raise ValueError("Axis list should not be empty.")

    dims = len(x.shape)
    if axis is None:
        axis = []
    elif isinstance(axis, tuple):
        axis = list(axis)
    elif isinstance(axis, int):
        axis = [axis]

    if not isinstance(axis, list):
        raise ValueError(
            "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
        )

    for i in range(len(axis)):
310 311
        if not isinstance(axis[i], int) or not (axis[i] < dims
                                                and axis[i] >= -dims):
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
            raise ValueError(
                "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
            )
        if axis[i] < 0:
            axis[i] += dims

    if len(axis) != len(set(axis)):
        raise ValueError("Axis has duplicated elements.")

    if _in_legacy_dygraph():
        median_index, out = _C_ops.nanmedian(x, 'axis', axis, 'keepdim',
                                             keepdim)
        return out

    check_variable_and_dtype(
        x, 'X', ['int32', 'int64', 'float16', 'float32', 'float64'],
        'nanmedian')

    helper = LayerHelper('nanmedian', **locals())
    attrs = {'axis': axis, 'keepdim': keepdim}
    out = helper.create_variable_for_type_inference(x.dtype)
    medians = helper.create_variable_for_type_inference(x.dtype)
334 335 336 337 338 339 340
    helper.append_op(type='nanmedian',
                     inputs={'X': x},
                     outputs={
                         'Out': out,
                         'MedianIndex': medians
                     },
                     attrs=attrs)
341 342 343
    return out


Z
zhulei 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
def median(x, axis=None, keepdim=False, name=None):
    """
    Compute the median along the specified axis.

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
        axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(12).reshape([3, 4])
371 372 373 374
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 1 , 2 , 3 ],
            #         [4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11]])
Z
zhulei 已提交
375 376

            y1 = paddle.median(x)
377 378
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.50000000])
Z
zhulei 已提交
379 380

            y2 = paddle.median(x, axis=0)
381 382
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4., 5., 6., 7.])
Z
zhulei 已提交
383 384

            y3 = paddle.median(x, axis=1)
385 386
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 5.50000000, 9.50000000])
Z
zhulei 已提交
387 388

            y4 = paddle.median(x, axis=0, keepdim=True)
389 390
            # Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6., 7.]])
Z
zhulei 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")
    is_flatten = axis is None
    dims = len(x.shape)
    if is_flatten:
        x = paddle.flatten(x)
        axis = 0
    else:
        if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
            raise ValueError(
                "In median, axis should be none or an integer in range [-rank(x), rank(x))."
            )
        if axis < 0:
            axis += dims
    sz = x.shape[axis]
    kth = sz >> 1
    tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
    dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
    if sz & 1 == 0:
        out_tensor = paddle.slice(
            tensor_topk, axes=[axis], starts=[kth - 1],
            ends=[kth]) + paddle.slice(
                tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
        out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
    else:
418 419 420 421 422
        out_tensor = paddle.cast(paddle.slice(tensor_topk,
                                              axes=[axis],
                                              starts=[kth],
                                              ends=[kth + 1]),
                                 dtype=dtype)
423
    out_tensor = out_tensor + paddle.sum(
424
        paddle.cast(paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True)
Z
zhulei 已提交
425 426 427 428 429 430 431 432 433 434 435
    if not keepdim or is_flatten:
        if not is_flatten:
            newshape = x.shape[:axis] + x.shape[axis + 1:]
        elif not keepdim:
            newshape = [1]
        else:
            newshape = [1] * dims
    else:
        newshape = out_tensor.shape
    out_tensor = out_tensor.reshape(newshape, name=name)
    return out_tensor
436 437


438
def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False):
439 440 441
    """
    Compute the quantile of the input along the specified axis.

442
    Args:
443 444
    Args:
        x (Tensor): The input Tensor, it's data type can be float32, float64.
445
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
446 447 448 449 450 451 452 453 454 455 456
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
457 458 459
        ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor.
            If ``ignore_nan`` is True, it will calculate nanquantile.
            Otherwise it will calculate quantile. Default is False.
460 461

    Returns:
462 463
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.
464
    """
465
    # Validate x
466 467
    if not isinstance(x, Variable):
        raise TypeError("input x should be a Tensor.")
468 469 470 471 472 473 474 475 476 477 478

    # Validate q
    if isinstance(q, (int, float)):
        q = [q]
    elif isinstance(q, (list, tuple)):
        if len(q) <= 0:
            raise ValueError("q should not be empty")
    else:
        raise TypeError("Type of q should be int, float, list or tuple.")

    # Validate axis
479
    dims = len(x.shape)
480
    out_shape = list(x.shape)
481 482 483 484 485 486
    if axis is None:
        x = paddle.flatten(x)
        axis = 0
        out_shape = [1] * dims
    else:
        if isinstance(axis, list):
487
            if len(axis) <= 0:
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
                raise ValueError("axis should not be empty")
            axis_src, axis_dst = [], []
            for axis_single in axis:
                if not isinstance(axis_single, int) or not (
                        axis_single < dims and axis_single >= -dims):
                    raise ValueError(
                        "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                    )
                if axis_single < 0:
                    axis_single = axis_single + dims
                axis_src.append(axis_single)
                out_shape[axis_single] = 1
            axis_dst = list(range(-len(axis), 0))
            x = paddle.moveaxis(x, axis_src, axis_dst)
            x = paddle.flatten(x, axis_dst[0], axis_dst[-1])
            axis = axis_dst[0]
        else:
            if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )
            if axis < 0:
                axis += dims
            out_shape[axis] = 1
512 513 514 515 516 517

    mask = x.isnan()
    valid_counts = mask.logical_not().sum(axis=axis,
                                          keepdim=True,
                                          dtype='float64')

518
    indices = []
519 520 521

    for q_num in q:
        if q_num < 0 or q_num > 1:
522
            raise ValueError("q should be in range [0, 1]")
523 524 525 526 527 528 529 530 531 532 533 534
        if paddle.in_dynamic_mode():
            q_num = paddle.to_tensor(q_num, dtype='float64')
        if ignore_nan:
            indices.append(q_num * (valid_counts - 1))
        else:
            # TODO(Asthestarsfalll): Use paddle.index_fill instead of where
            index = q_num * (valid_counts - 1)
            last_index = x.shape[axis] - 1
            nums = paddle.full_like(index, fill_value=last_index)
            index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index)
            indices.append(index)

535 536
    sorted_tensor = paddle.sort(x, axis)

537
    outputs = []
538

539
    # TODO(chenjianye): replace the for-loop to directly take elements.
540 541 542
    for index in indices:
        indices_below = paddle.floor(index).astype(paddle.int32)
        indices_upper = paddle.ceil(index).astype(paddle.int32)
543 544 545 546 547 548
        tensor_upper = paddle.take_along_axis(sorted_tensor,
                                              indices_upper,
                                              axis=axis)
        tensor_below = paddle.take_along_axis(sorted_tensor,
                                              indices_below,
                                              axis=axis)
549
        weights = (index - indices_below.astype('float64'))
550 551
        out = paddle.lerp(tensor_below.astype('float64'),
                          tensor_upper.astype('float64'), weights)
552 553 554 555 556
        if not keepdim:
            out = paddle.squeeze(out, axis=axis)
        else:
            out = out.reshape(out_shape)
        outputs.append(out)
557 558 559

    if len(q) > 1:
        outputs = paddle.stack(outputs, 0)
560
    else:
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        outputs = outputs[0]

    return outputs


def quantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input along the specified axis.
    If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
        x (Tensor): The input Tensor, it's data type can be float32, float64.
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x = np.arange(0, 8, dtype=np.float32).reshape(4, 2)
            # [[0 1]
            #  [2 3]
            #  [4 5]
            #  [6 7]]
            y = paddle.to_tensor(x)
            y1 = paddle.quantile(y, q=0.5, axis=[0, 1])
            # 3.5

            y2 = paddle.quantile(y, q=0.5, axis=1)
            # [0.5 2.5 4.5 6.5]

            y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0)
            # [[1.8 2.8]
            #  [3.  4. ]]

            x[0][0] = np.nan
            y = paddle.to_tensor(x)
            y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True)
            # [[nan]
            #  [2.8]
            #  [4.8]
            #  [6.8]]

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False)


def nanquantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input as if NaN values in input did not exist.
    If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
        x (Tensor): The input Tensor, it's data type can be float32, float64.
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array(
                [[0, 1, 2, 3, 4],
                 [5, 6, 7, 8, 9]],
                dtype=np.float32
            )
            x[0][0] = np.nan

            x = paddle.to_tensor(x)
            y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1])
            # 5.0

            y2 = paddle.nanquantile(x, q=0.5, axis=1)
            # [2.5 7. ]

            y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0)
            # [[5.  2.5 3.5 4.5 5.5]
            #  [5.  3.5 4.5 5.5 6.5]

            y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True)
            # [[3.4]
            #  [8.2]]

            nan = paddle.full(shape=[2, 3], fill_value=np.nan)
            y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True)
            # [[nan]
            #  [nan]]

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)