cxx_api_bin.cc 3.8 KB
Newer Older
S
Superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
superjomn 已提交
15
#include "paddle/fluid/lite/api/cxx_api.h"
T
tensor-tang 已提交
16
#include <chrono>  // NOLINT
S
superjomn 已提交
17 18 19 20 21
#include "paddle/fluid/lite/core/mir/passes.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace paddle {
namespace lite {

22 23 24 25 26 27 28 29 30
using Time = decltype(std::chrono::high_resolution_clock::now());
Time time() { return std::chrono::high_resolution_clock::now(); }
double time_diff(Time t1, Time t2) {
  typedef std::chrono::microseconds ms;
  auto diff = t2 - t1;
  ms counter = std::chrono::duration_cast<ms>(diff);
  return counter.count() / 1000.0;
}

31
void Run(const char* model_dir, int repeat, int thread_num) {
32 33
#ifdef LITE_WITH_ARM
  DeviceInfo::Init();
34
  DeviceInfo::Global().SetRunMode(LITE_POWER_HIGH, thread_num);
35
#endif
36
  lite::ExecutorLite predictor;
37 38
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)},
                                   Place{TARGET(kARM), PRECISION(kFloat)}});
S
superjomn 已提交
39

40
  predictor.Build(model_dir, Place{TARGET(kARM), PRECISION(kFloat)},
S
superjomn 已提交
41 42 43
                  valid_places);

  auto* input_tensor = predictor.GetInput(0);
44
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 3, 224, 224})));
S
superjomn 已提交
45
  auto* data = input_tensor->mutable_data<float>();
46
  for (int i = 0; i < input_tensor->dims().production(); i++) {
47
    data[i] = 1;
S
superjomn 已提交
48 49
  }

50 51 52 53 54 55 56
  for (int i = 0; i < 10; i++) predictor.Run();

  auto time1 = time();
  for (int i = 0; i < repeat; i++) predictor.Run();
  auto time2 = time();
  std::cout << " predict cost: " << time_diff(time1, time2) / repeat << "ms"
            << std::endl;
S
superjomn 已提交
57 58 59 60 61 62

  auto* out = predictor.GetOutput(0);
  LOG(INFO) << out << " memory size " << out->data_size();
  LOG(INFO) << "out " << out->data<float>()[0];
  LOG(INFO) << "out " << out->data<float>()[1];
  LOG(INFO) << "dims " << out->dims();
63
  LOG(INFO) << "out data size: " << out->data_size();
S
superjomn 已提交
64 65 66 67 68
}

}  // namespace lite
}  // namespace paddle

S
Superjomn 已提交
69
int main(int argc, char** argv) {
70 71
  CHECK_EQ(argc, 4) << "usage: ./cmd <model_dir> <repeat> <thread_num>";
  paddle::lite::Run(argv[1], std::stoi(argv[2]), std::stoi(argv[3]));
S
superjomn 已提交
72 73 74 75 76 77 78 79 80

  return 0;
}

USE_LITE_OP(mul);
USE_LITE_OP(fc);
USE_LITE_OP(scale);
USE_LITE_OP(feed);
USE_LITE_OP(fetch);
81 82
USE_LITE_OP(io_copy);

N
nhzlx 已提交
83
USE_LITE_OP(conv2d);
84
USE_LITE_OP(batch_norm);
85 86 87 88 89 90
USE_LITE_OP(relu);
USE_LITE_OP(depthwise_conv2d);
USE_LITE_OP(pool2d);
USE_LITE_OP(elementwise_add);
USE_LITE_OP(softmax);

91 92 93 94
USE_LITE_KERNEL(feed, kHost, kAny, kAny, def);
USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def);

#ifdef LITE_WITH_ARM
95 96 97
USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(scale, kARM, kFloat, kNCHW, def);
98

N
nhzlx 已提交
99
USE_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW, def);
100 101
USE_LITE_KERNEL(batch_norm, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(relu, kARM, kFloat, kNCHW, def);
N
nhzlx 已提交
102
USE_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, def);
103 104
USE_LITE_KERNEL(pool2d, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(elementwise_add, kARM, kFloat, kNCHW, def);
105
USE_LITE_KERNEL(softmax, kARM, kFloat, kNCHW, def);
106

107 108 109
// USE_LITE_KERNEL(feed, kARM, kAny, kAny, def);
// USE_LITE_KERNEL(fetch, kARM, kAny, kAny, def);
#endif  // LITE_WITH_ARM
S
superjomn 已提交
110 111 112 113 114 115

#ifdef LITE_WITH_CUDA
USE_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW, def);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, host_to_device);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host);
#endif