conv_compute_test.cc 16.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include <gtest/gtest.h>
S
shixiaowei02 已提交
17
#include <limits>
T
tensor-tang 已提交
18 19
#include <memory>
#include <utility>
T
tensor-tang 已提交
20
#include <vector>
S
shixiaowei02 已提交
21
#include "paddle/fluid/lite/arm/math/type_trans.h"
T
tensor-tang 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

S
shixiaowei02 已提交
29 30 31 32
static float compute_max_kernel(const float* din, int64_t size) {
  float max_value = -std::numeric_limits<float>::max();
  for (int64_t i = 0; i < size; i++) {
    max_value = max_value > din[0] ? max_value : din[0];
T
tensor-tang 已提交
33
  }
S
shixiaowei02 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  LOG(INFO) << "[max_value]: " << max_value;
  return max_value;
}

static std::vector<float> get_tensor_scale_n(const float* in_data,
                                             int axis_size, int64_t inner_size,
                                             float scale_factor) {
  std::vector<float> scale_out(axis_size);
  for (int c = 0; c < axis_size; ++c) {              // num
    const float* ptr_in = in_data + c * inner_size;  // channel*width*height
    scale_out[c] = compute_max_kernel(ptr_in, inner_size) / scale_factor;
  }
  for (auto s : scale_out) {
    LOG(INFO) << "[Scale out]: " << s;
  }
  return scale_out;
}

template <typename Dtype1, typename Dtype2>
static void conv_basic(const Dtype1* din, Dtype2* dout, int num, int chout,
                       int hout, int wout, int chin, int hin, int win,
                       const Dtype1* weights, const Dtype2* bias, int group,
                       int kernel_w, int kernel_h, int stride_w, int stride_h,
                       int dila_w, int dila_h, int pad_w, int pad_h,
                       bool flag_bias, bool flag_relu) {
  Dtype2 beta = 0;
  auto src_data = din;
  auto dst_data_ref = dout;
  auto weights_data = weights;
  auto with_bias = flag_bias;
  auto bias_data = bias;

  int in_num = num;
  int out_channels = chout;
  int out_h = hout;
  int out_w = wout;
T
tensor-tang 已提交
70

S
shixiaowei02 已提交
71 72 73 74 75 76 77 78
  int in_channel = chin;
  int in_h = hin;
  int in_w = win;
  int out_c_group = out_channels / group;
  int in_c_group = in_channel / group;

  for (int n = 0; n < in_num; ++n) {
    for (int g = 0; g < group; ++g) {
T
tensor-tang 已提交
79
      for (int oc = 0; oc < out_c_group; ++oc) {
S
shixiaowei02 已提交
80 81 82 83 84 85 86 87
        for (int oh = 0; oh < out_h; ++oh) {
          for (int ow = 0; ow < out_w; ++ow) {
            int out_idx = n * group * out_c_group * out_h * out_w +
                          g * out_c_group * out_h * out_w + oc * out_h * out_w +
                          oh * out_w + ow;
            Dtype2 bias_d =
                with_bias ? (bias_data[g * out_c_group + oc]) : (Dtype2)0;
            dst_data_ref[out_idx] = bias_d;  // + dst_data_ref[out_idx] * beta;
T
tensor-tang 已提交
88 89 90
            for (int ic = 0; ic < in_c_group; ++ic) {
              for (int kh = 0; kh < kernel_h; ++kh) {
                for (int kw = 0; kw < kernel_w; ++kw) {
S
shixiaowei02 已提交
91 92 93 94
                  int iw = ow * stride_w - pad_w + kw * (dila_w);
                  int ih = oh * stride_h - pad_h + kh * (dila_h);
                  if (iw < 0 || iw >= in_w) continue;
                  if (ih < 0 || ih >= in_h) continue;
T
tensor-tang 已提交
95

S
shixiaowei02 已提交
96 97 98
                  int iidx = n * in_channel * in_h * in_w +
                             g * in_c_group * in_h * in_w + ic * in_h * in_w +
                             ih * in_w + iw;
T
tensor-tang 已提交
99 100 101 102 103
                  int widx =
                      g * out_c_group * in_c_group * kernel_h * kernel_w +
                      oc * in_c_group * kernel_h * kernel_w +
                      ic * kernel_h * kernel_w + kh * kernel_w + kw;

S
shixiaowei02 已提交
104
                  dst_data_ref[out_idx] += src_data[iidx] * weights_data[widx];
T
tensor-tang 已提交
105 106 107 108
                }
              }
            }
            if (flag_relu) {
S
shixiaowei02 已提交
109 110 111
              dst_data_ref[out_idx] = dst_data_ref[out_idx] > (Dtype2)0
                                          ? dst_data_ref[out_idx]
                                          : (Dtype2)0;
T
tensor-tang 已提交
112 113 114 115 116 117 118 119
            }
          }
        }
      }
    }
  }
}

S
shixiaowei02 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename Dtype1, typename Dtype2>
void conv_compute_ref(const operators::ConvParam& param) {
  const Dtype1* din = param.x->data<Dtype1>();
  Dtype2* dout = param.output->mutable_data<Dtype2>();

  int num = param.x->dims()[0];
  int chout = param.output->dims()[1];
  int hout = param.output->dims()[2];
  int wout = param.output->dims()[3];

  int chin = param.x->dims()[1];
  int hin = param.x->dims()[2];
  int win = param.x->dims()[3];

  const Dtype1* weights = param.filter->mutable_data<Dtype1>();
  Dtype2* bias = nullptr;
  if (param.bias != nullptr) {
    bias = param.bias->mutable_data<Dtype2>();
  }

  int group = param.groups;
  int kernel_w = param.filter->dims()[2];
  int kernel_h = param.filter->dims()[3];
  int stride_w = param.strides[0];
  int stride_h = param.strides[1];
  int dila_w = param.dilations[0];
  int dila_h = param.dilations[1];

  int pad_w = param.paddings[0];
  int pad_h = param.paddings[1];
  bool flag_bias = (param.bias != nullptr);
  bool flag_relu = param.fuse_relu;

  conv_basic(din, dout, num, chout, hout, wout, chin, hin, win, weights, bias,
             group, kernel_w, kernel_h, stride_w, stride_h, dila_w, dila_h,
             pad_w, pad_h, flag_bias, flag_relu);
}

T
tensor-tang 已提交
158
TEST(conv_arm, retrive_op) {
159 160
  auto conv = KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
      "conv2d");
T
tensor-tang 已提交
161 162 163 164
  ASSERT_FALSE(conv.empty());
  ASSERT_TRUE(conv.front());
}

S
shixiaowei02 已提交
165 166 167 168 169 170 171
TEST(conv_arm_int8, retrive_op) {
  auto conv =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kInt8)>("conv2d");
  ASSERT_FALSE(conv.empty());
  ASSERT_TRUE(conv.front());
}

T
tensor-tang 已提交
172 173 174 175 176 177
TEST(conv_arm, init) {
  ConvCompute conv;
  ASSERT_EQ(conv.precision(), PRECISION(kFloat));
  ASSERT_EQ(conv.target(), TARGET(kARM));
}

S
shixiaowei02 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
TEST(conv_arm_int8, init) {
  ConvComputeInt8<PRECISION(kFloat)> float_out;
  ASSERT_EQ(float_out.precision(), PRECISION(kInt8));
  ASSERT_EQ(float_out.target(), TARGET(kARM));
  ConvComputeInt8<PRECISION(kInt8)> int8_out;
  ASSERT_EQ(float_out.precision(), PRECISION(kInt8));
  ASSERT_EQ(float_out.target(), TARGET(kARM));
}

TEST(conv_arm_int8, compute) {
  DeviceInfo::Init();
  for (auto n : {2}) {
    for (auto ic : {6}) {
      for (auto oc : {6}) {
        for (auto ih : {9}) {
          for (auto iw : {9}) {
            for (auto flag_bias : {false, /*true*/}) {
              for (auto flag_relu : {false, /*true*/}) {
                for (auto depthwise : {false, /*true*/}) {
                  for (auto dilation : {1}) {
                    for (auto stride : {1}) {
                      for (auto padding : {0}) {
                        for (auto ks : {1}) {
                          int group = 1;
                          if (depthwise) {  // depthwise convolution ?
                            group = oc = ic;
                          }

                          const int dks = dilation * (ks - 1) + 1;
                          int oh = (ih + 2 * padding - dks) / stride + 1;
                          int ow = (iw + 2 * padding - dks) / stride + 1;
                          std::vector<int64_t> input_shape = {n, ic, ih, iw};
                          std::vector<int64_t> filter_shape = {oc, ic / group,
                                                               ks, ks};
                          std::vector<int64_t> output_shape({n, oc, oh, ow});

                          Tensor input_int8;
                          Tensor filter_int8;
                          Tensor output_int32, output_int32_ref;

                          input_int8.Resize(input_shape);
                          filter_int8.Resize(filter_shape);
                          output_int32.Resize(output_shape);
                          output_int32_ref.Resize(output_shape);

                          int8_t* input_int8_data =
                              input_int8.mutable_data<int8_t>();
                          int8_t* filter_int8_data =
                              filter_int8.mutable_data<int8_t>();
                          for (int i = 0; i < input_int8.dims().production();
                               i++) {
                            input_int8_data[i] = 1.f;
                          }
                          for (int i = 0; i < filter_int8.dims().production();
                               i++) {
                            filter_int8_data[i] = 1.f;
                          }

                          operators::ConvParam param;
                          param.x = &input_int8;
                          param.filter = &filter_int8;
                          param.bias = nullptr;
                          param.fuse_relu = false;
                          param.paddings = std::vector<int>({padding, padding});
                          param.strides = std::vector<int>({stride, stride});
                          param.dilations =
                              std::vector<int>({dilation, dilation});
                          param.groups = group;
                          param.output = &output_int32_ref;
                          conv_compute_ref<int8_t, int>(param);

                          param.output = &output_int32;
                          std::unique_ptr<KernelContext> ctx(new KernelContext);
                          lite::arm::math::GemmLikeConvInt8<PRECISION(kInt32)>
                              int8gemm_int32;
                          int8gemm_int32.init(param, &ctx->As<ARMContext>());
                          int8gemm_int32.create(param, &ctx->As<ARMContext>());
                          int8gemm_int32.run(param);

                          int32_t* output_int32_data =
                              output_int32.mutable_data<int32_t>();
                          int32_t* output_int32_ref_data =
                              output_int32_ref.mutable_data<int32_t>();

                          for (int i = 0; i < output_int32.dims().production();
                               i++) {
                            EXPECT_NEAR(output_int32_data[i],
                                        output_int32_ref_data[i], 1e-3);
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

T
tensor-tang 已提交
281 282
TEST(conv_arm, compute) {
  DeviceInfo::Init();
T
tensor-tang 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
#if 1
  for (auto n : {2}) {
    for (auto ic : {6}) {
      for (auto oc : {6}) {
        for (auto ih : {9}) {
          for (auto iw : {9}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
                for (auto depthwise : {false, true}) {
                  for (auto dilation : {1}) {
                    for (auto stride : {1, 2}) {
                      for (auto padding : {0, 1, 2}) {
                        for (auto ks : {1, 3, 5}) {
#else
T
tensor-tang 已提交
297
  for (auto n : {1, 2}) {
298 299 300 301 302 303
    for (auto ic : {6, 32 /*, 128*/}) {
      for (auto oc : {6, 32 /*, 128*/}) {
        for (auto ih : {9, 18 /*, 56 , 112, 224, 512*/}) {
          for (auto iw : {9, 18 /*, 56, 112, 224, 512*/}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
T
tensor-tang 已提交
304
                for (auto depthwise : {false, true}) {
305
                  for (auto dilation : {1, 2}) {
T
tensor-tang 已提交
306
                    for (auto stride : {1, 2}) {
307 308
                      for (auto padding : {0, 1, 2}) {
                        for (auto ks : {1, 3, 5}) {
T
tensor-tang 已提交
309
#endif
T
tensor-tang 已提交
310
                          int group = 1;
311 312
                          if (depthwise) {  // depthwise convolution ?
                            group = oc = ic;
T
tensor-tang 已提交
313 314
                          }
                          // get input, filter and output shape
315 316 317
                          std::vector<int64_t> input_shape = {n, ic, ih, iw};
                          std::vector<int64_t> filter_shape = {oc, ic / group,
                                                               ks, ks};
318 319 320 321
                          const int dks = dilation * (ks - 1) + 1;
                          int oh = (ih + 2 * padding - dks) / stride + 1;
                          int ow = (iw + 2 * padding - dks) / stride + 1;
                          std::vector<int64_t> output_shape({n, oc, oh, ow});
T
tensor-tang 已提交
322
                          // resize input, filter and output
323 324 325 326 327
                          Tensor input;
                          Tensor filter;
                          Tensor bias;
                          Tensor output;
                          Tensor output_ref;
328 329 330 331
                          input.Resize(input_shape);
                          filter.Resize(filter_shape);
                          output.Resize(output_shape);
                          output_ref.Resize(output_shape);
T
Tensor Tang 已提交
332 333 334 335 336 337
                          VLOG(3) << "input: " << input.dims();
                          VLOG(3) << "filter: " << filter.dims()
                                  << " padding:" << padding
                                  << " stride:" << stride
                                  << " dilation:" << dilation;
                          VLOG(3) << "output: " << output.dims();
T
tensor-tang 已提交
338 339 340 341
                          auto* input_data = input.mutable_data<float>();
                          auto* filter_data = filter.mutable_data<float>();
                          auto* output_data = output.mutable_data<float>();
                          for (int i = 0; i < input.dims().production(); i++) {
342 343
                            float sign = i % 3 == 0 ? -1.0f : 1.0f;
                            input_data[i] = sign * static_cast<float>(i % 128);
T
tensor-tang 已提交
344 345
                          }
                          for (int i = 0; i < filter.dims().production(); i++) {
346 347 348
                            filter_data[i] =
                                i * 0.001f /
                                static_cast<float>(filter.dims().production());
T
tensor-tang 已提交
349
                          }
350 351 352 353 354 355
                          // prepare kernel params and run
                          ConvCompute conv;
                          std::unique_ptr<KernelContext> ctx(new KernelContext);
                          ctx->As<ARMContext>();
                          conv.SetContext(std::move(ctx));
                          operators::ConvParam param;
T
tensor-tang 已提交
356 357 358 359
                          param.x = &input;
                          param.filter = &filter;
                          param.output = &output;
                          param.bias = nullptr;
360 361 362 363 364 365 366 367
                          if (flag_bias) {
                            bias.Resize({oc});
                            auto* bias_data = bias.mutable_data<float>();
                            for (int i = 0; i < bias.dims().production(); i++) {
                              bias_data[i] = static_cast<float>(i);
                            }
                            param.bias = &bias;
                          }
368
                          param.fuse_relu = flag_relu;
T
tensor-tang 已提交
369 370 371 372 373 374
                          param.paddings = std::vector<int>({padding, padding});
                          param.strides = std::vector<int>({stride, stride});
                          param.dilations =
                              std::vector<int>({dilation, dilation});
                          param.groups = group;
                          conv.SetParam(param);
375 376
                          conv.Launch();
                          // invoking ref implementation and compare results
T
tensor-tang 已提交
377
                          param.output = &output_ref;
S
shixiaowei02 已提交
378
                          conv_compute_ref<float, float>(param);
379 380
                          auto* output_ref_data =
                              output_ref.mutable_data<float>();
T
tensor-tang 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
                          for (int i = 0; i < output.dims().production(); i++) {
                            EXPECT_NEAR(output_data[i], output_ref_data[i],
                                        1e-3);
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
T
tensor-tang 已提交
397 398 399 400 401 402 403
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

T
tensor-tang 已提交
404 405
USE_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, def);