Conv3DLayer.cpp 8.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduoZH 已提交
15
#include "Conv3DLayer.h"
C
chengduoZH 已提交
16 17 18 19 20 21 22 23 24
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(conv3d, Conv3DLayer);

bool Conv3DLayer::init(const LayerMap &layerMap,
                       const ParameterMap &parameterMap) {
C
chengduoZH 已提交
25
  if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
C
chengduoZH 已提交
26 27
  int index = 0;
  for (auto &inputConfig : config_.inputs()) {
C
chengduoZH 已提交
28 29 30 31 32 33 34
    const ConvConfig &conf = inputConfig.conv_conf();
    M_.push_back(numFilters_ / conf.groups());
    K_.push_back(filterPixels_[index] * filterChannels_[index]);
    if (nullptr != weights_[index]->getW())
      weights_[index]->getW()->reshape(weights_[index]->getW()->getWidth(),
                                       weights_[index]->getW()->getHeight());
    if (nullptr != weights_[index]->getWGrad())
C
chengduoZH 已提交
35
      weights_[index]->getWGrad()->reshape(
C
chengduoZH 已提交
36 37 38
          weights_[index]->getWGrad()->getWidth(),
          weights_[index]->getWGrad()->getHeight());
    ++index;
C
chengduoZH 已提交
39
  }
C
chengduoZH 已提交
40 41 42 43 44
  if (nullptr != biases_->getWGrad())
    biases_->getWGrad()->reshape(biases_->getWGrad()->width_,
                                 biases_->getWGrad()->height_);
  if (nullptr != biases_->getW())
    biases_->getW()->reshape(biases_->getW()->width_, biases_->getW()->height_);
C
chengduoZH 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  CHECK(inputLayers_.size() == parameters_.size());
  return true;
}

size_t Conv3DLayer::getSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  // imgSizeH_.clear();
  // imgSizeW_.clear();
  // imgSizeD_.clear();
  outputH_.clear();
  outputW_.clear();
  outputD_.clear();
  N_.clear();
  size_t layerSize = 0;
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
C
chengduoZH 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    // imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
    // imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
    // imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
    outputW_.push_back(outputSize(
        imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
    outputH_.push_back(outputSize(
        imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
    outputD_.push_back(outputSize(
        imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));

    N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
    CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
    layerSize += N_[i] * numFilters_;
C
chengduoZH 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  }
  getOutput().setFrameHeight(outputH_[0]);
  getOutput().setFrameWidth(outputW_[0]);
  getOutput().setFrameDepth(outputD_[0]);
  return layerSize;
}

void Conv3DLayer::forward(PassType passType) {
  Layer::forward(passType);

  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  int outWidth = getSize();
  resetOutput(batchSize, outWidth);

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
C
chengduoZH 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    REGISTER_TIMER_INFO("FwdConv3D", getName().c_str());
    const MatrixPtr &inMat = getInputValue(i);
    const MatrixPtr &outMat = getOutputValue();
    int M = M_[i];
    int N = N_[i];
    int K = K_[i];
    Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
    MatrixPtr wMat = weights_[i]->getW();
    for (int n = 0; n < batchSize; ++n) {
      colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
                       channels_[i],
                       imgSizeD_[i],
                       imgSizeH_[i],
                       imgSizeW_[i],
                       filterSizeZ_[i],
                       filterSizeY_[i],
                       filterSize_[i],
                       strideZ_[i],
                       strideY_[i],
                       stride_[i],
                       paddingZ_[i],
                       paddingY_[i],
                       padding_[i]);

      real *outData = outMat->getData() + n * outMat->getStride();
      MatrixPtr outMatSub =
          Matrix::create(outData, groups_[i] * M, N, false, useGpu_);
      for (int g = 0; g < groups_[i]; g++) {
        MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
        MatrixPtr in = colBuf_->subMatrix(g * K, K);
        MatrixPtr out = outMatSub->subMatrix(g * M, M);
        out->mul(*wMatSub, *in, 1.0, 1.0);
C
chengduoZH 已提交
120
      }
C
chengduoZH 已提交
121
    }
C
chengduoZH 已提交
122 123
  }
  if (nullptr != this->biasParameter_) {
C
chengduoZH 已提交
124 125
    REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
    this->addBias();
C
chengduoZH 已提交
126 127 128 129 130 131 132 133
  }
  forwardActivation();
}

void Conv3DLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  if (biases_ && biases_->getWGrad()) {
C
chengduoZH 已提交
134 135
    bpropBiases();
    biases_->getParameterPtr()->incUpdate(callback);
C
chengduoZH 已提交
136 137 138
  }

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
C
chengduoZH 已提交
139 140 141 142 143 144 145 146 147
    REGISTER_TIMER_INFO("BwdConv3D", getName().c_str());
    if (weights_[i]->getWGrad()) {
      bpropWeights(i);
    }
    if (getInputGrad(i)) {
      bpropData(i);
    }
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    weights_[i]->getParameterPtr()->incUpdate(callback);
C
chengduoZH 已提交
148 149 150 151 152 153 154
  }
}

void Conv3DLayer::bpropWeights(int i) {
  int M = M_[i];
  int N = N_[i];
  int K = K_[i];
C
chengduoZH 已提交
155
  const MatrixPtr &inMat = getInputValue(i);
C
chengduoZH 已提交
156 157 158 159
  Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
  MatrixPtr wGradMat = weights_[i]->getWGrad();
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  for (int n = 0; n < batchSize; ++n) {
C
chengduoZH 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
                     channels_[i],
                     imgSizeD_[i],
                     imgSizeH_[i],
                     imgSizeW_[i],
                     filterSizeZ_[i],
                     filterSizeY_[i],
                     filterSize_[i],
                     strideZ_[i],
                     strideY_[i],
                     stride_[i],
                     paddingZ_[i],
                     paddingY_[i],
                     padding_[i]);

    real *outGradData =
        getOutputGrad()->getData() + n * getOutputGrad()->getStride();
    MatrixPtr outGradSub =
        Matrix::create(outGradData, groups_[i] * M, N, false, useGpu_);
    for (int g = 0; g < groups_[i]; ++g) {
      MatrixPtr inMatSub = colBuf_->subMatrix(g * K, K);
      MatrixPtr outG = outGradSub->subMatrix(g * M, M);
      MatrixPtr wGradSub = wGradMat->subMatrix(g * M, M);
      wGradSub->mul(*outG, *(inMatSub->getTranspose()), 1.0, 1.0);
    }
C
chengduoZH 已提交
185 186 187 188 189 190 191 192 193 194 195
  }
}

void Conv3DLayer::bpropData(int i) {
  int M = M_[i];
  int N = N_[i];
  int K = K_[i];
  Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
  MatrixPtr wMat = weights_[i]->getW();
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  for (int n = 0; n < batchSize; ++n) {
C
chengduoZH 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    real *outGradData =
        getOutputGrad()->getData() + n * getOutputGrad()->getStride();
    real *preGradData =
        getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
    MatrixPtr outGradSub =
        Matrix::create(outGradData, M * groups_[i], N, false, useGpu_);
    for (int g = 0; g < groups_[i]; ++g) {
      MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
      MatrixPtr outG = outGradSub->subMatrix(g * M, M);
      MatrixPtr inGradMatSub = colBuf_->subMatrix(g * K, K);
      inGradMatSub->mul(*(wMatSub->getTranspose()), *outG, 1.0, 0.0);
    }
    colBuf_->col2Vol(preGradData,
                     channels_[i],
                     imgSizeD_[i],
                     imgSizeH_[i],
                     imgSizeW_[i],
                     filterSizeZ_[i],
                     filterSizeY_[i],
                     filterSize_[i],
                     strideZ_[i],
                     strideY_[i],
                     stride_[i],
                     paddingZ_[i],
                     paddingY_[i],
                     padding_[i],
                     1.0,
                     1.0);
C
chengduoZH 已提交
224 225 226 227 228 229
  }
}

void Conv3DLayer::bpropBiases() {
  MatrixPtr outGradMat = getOutputGrad();
  if (this->sharedBiases_) {
C
chengduoZH 已提交
230
    biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
C
chengduoZH 已提交
231
  } else {
C
chengduoZH 已提交
232
    biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
C
chengduoZH 已提交
233 234 235 236 237 238
  }
}

void Conv3DLayer::addBias() {
  MatrixPtr outMat = getOutputValue();
  if (this->sharedBiases_) {
C
chengduoZH 已提交
239
    outMat->addSharedBias(*(biases_->getW()), 1.0f);
C
chengduoZH 已提交
240
  } else {
C
chengduoZH 已提交
241
    outMat->addBias(*(biases_->getW()), 1.0f);
C
chengduoZH 已提交
242 243 244 245
  }
}

}  // namespace paddle