elementwise_xpu.h 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_XPU
16
#include <string>
17 18 19
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/place.h"

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#define XPU_MALLOC(addr, num_bytes)                                        \
  PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(addr), num_bytes), \
                    XPU_SUCCESS,                                           \
                    platform::errors::ResourceExhausted(                   \
                        "\n\nOut of memory error on XPU, Cannot"           \
                        "allocate %s memory on XPU. \n\nPlease "           \
                        "check whether there is any other process "        \
                        "using XPU.\n",                                    \
                        string::HumanReadableSize(num_bytes)))

#define DEFINE_XPU_GRAD_KERNEL(kernel_type, kernel_name, use_x_y_data)         \
  template <typename DeviceContext, typename T>                                \
  class Elementwise##kernel_type##GradXPUKernel                                \
      : public ElemwiseGradKernel<T> {                                         \
   public:                                                                     \
    void Compute(const framework::ExecutionContext& ctx) const override {      \
      ElemwiseGradKernel<T>::Compute(ctx);                                     \
      using Tensor = framework::Tensor;                                        \
      auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));           \
      auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));              \
      auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));              \
      auto dx_dims = dout->dims();                                             \
      auto dy_dims_untrimed = dout->dims();                                    \
      T* dx_data = NULL;                                                       \
      T* dy_data = NULL;                                                       \
      const T* y_data = nullptr;                                               \
      const T* x_data = nullptr;                                               \
      T* y_broadcast = nullptr;                                                \
      if (use_x_y_data) {                                                      \
        auto* x = ctx.Input<Tensor>("X");                                      \
        auto* y = ctx.Input<Tensor>("Y");                                      \
        y_data = y->data<T>();                                                 \
        x_data = x->data<T>();                                                 \
      } else {                                                                 \
        x_data = dout->data<T>();                                              \
        y_data = dout->data<T>();                                              \
      }                                                                        \
      int axis = ctx.Attr<int>("axis");                                        \
      PADDLE_ENFORCE_GE(                                                       \
          dx_dims.size(), dy_dims_untrimed.size(),                             \
          platform::errors::InvalidArgument(                                   \
              "Rank of first input must >= rank of second input."));           \
      if (dx != nullptr) {                                                     \
        dx->mutable_data<T>(ctx.GetPlace());                                   \
        dx_dims = dx->dims();                                                  \
        dx_data = dx->data<T>();                                               \
      }                                                                        \
      if (dy != nullptr) {                                                     \
        dy->mutable_data<T>(ctx.GetPlace());                                   \
        dy_dims_untrimed = dy->dims();                                         \
        dy_data = dy->data<T>();                                               \
      }                                                                        \
      int pre, n, post, is_run_common_broadcast;                               \
      if (dx_dims == dy_dims_untrimed) {                                       \
        pre = post = 1;                                                        \
        n = dout->numel();                                                     \
      } else {                                                                 \
        axis = (axis == -1 ? dx_dims.size() - dy_dims_untrimed.size() : axis); \
        PADDLE_ENFORCE_EQ(axis >= 0 && axis < dx_dims.size(), true,            \
                          platform::errors::InvalidArgument(                   \
                              "Axis should be in range [0, dx_dims)"));        \
        auto dy_dims = trim_trailing_singular_dims(dy_dims_untrimed);          \
        axis = (dy_dims.size() == 0) ? dx_dims.size() : axis;                  \
        get_mid_dims(dx_dims, dy_dims, axis, &pre, &n, &post,                  \
                     &is_run_common_broadcast);                                \
      }                                                                        \
      int len = pre * n * post;                                                \
      auto& dev_ctx =                                                          \
          ctx.template device_context<paddle::platform::XPUDeviceContext>();   \
      if (dx == nullptr) {                                                     \
        XPU_MALLOC(&dx_data, len * sizeof(float));                             \
      }                                                                        \
      if (dy == nullptr) {                                                     \
        XPU_MALLOC(&dy_data, len * sizeof(float));                             \
      } else {                                                                 \
        if (len != n) {                                                        \
          XPU_MALLOC(&dy_data, len * sizeof(float));                           \
        }                                                                      \
      }                                                                        \
      if (use_x_y_data) {                                                      \
        if (len != n) {                                                        \
          XPU_MALLOC(&y_broadcast, len * sizeof(float));                       \
          int res =                                                            \
              xpu::broadcast_ew(dev_ctx.x_context(), y_data, y_broadcast, pre, \
                                n, post, xpu::ElementwiseOp::ASSIGN);          \
          PADDLE_ENFORCE_EQ(res, xpu::Error_t::SUCCESS,                        \
                            platform::errors::Fatal("XPU kernel error!"));     \
          y_data = y_broadcast;                                                \
        }                                                                      \
      }                                                                        \
      int res = xpu::elementwise_##kernel_name##_grad(                         \
          dev_ctx.x_context(), x_data, y_data, dout->data<T>() /*out*/,        \
          dout->data<T>(), dx_data, dy_data, len);                             \
      PADDLE_ENFORCE_EQ(res, xpu::Error_t::SUCCESS,                            \
                        platform::errors::Fatal("XPU kernel error!"));         \
      if ((dy != nullptr) && (len != n)) {                                     \
        int res = xpu::reduce_ew(dev_ctx.x_context(), dy_data, dy->data<T>(),  \
                                 pre, n, post, xpu::ElementwiseOp::ASSIGN);    \
        PADDLE_ENFORCE_EQ(res, xpu::Error_t::SUCCESS,                          \
                          platform::errors::Fatal("XPU kernel error!"));       \
        dev_ctx.Wait();                                                        \
        xpu_free(dy_data);                                                     \
      }                                                                        \
      if ((len != n || dx == nullptr || dy == nullptr) &&                      \
          !(dy != nullptr && len != n)) {                                      \
        dev_ctx.Wait();                                                        \
      }                                                                        \
      if (dx == nullptr) {                                                     \
        xpu_free(dx_data);                                                     \
      }                                                                        \
      if (dy == nullptr) {                                                     \
        xpu_free(dy_data);                                                     \
      }                                                                        \
      if (use_x_y_data) {                                                      \
        if (len != n) {                                                        \
          xpu_free(y_broadcast);                                               \
        }                                                                      \
      }                                                                        \
    }                                                                          \
  }

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
namespace paddle {
namespace operators {

template <typename T>
struct XPUAddFunctor {
  int operator()(xpu::Context* ctx, const T* x, const T* y, T* z, int len) {
    return xpu::elementwise_add(ctx, x, y, z, len);
  }
};

template <typename T>
struct XPUMulFunctor {
  int operator()(xpu::Context* ctx, const T* x, const T* y, T* z, int len) {
    return xpu::elementwise_mul(ctx, x, y, z, len);
  }
};

template <typename T, typename Functor>
void XPUElementwise(const framework::ExecutionContext& ctx) {
160 161 162
  PADDLE_ENFORCE_EQ(platform::is_xpu_place(ctx.GetPlace()), true,
                    platform::errors::PreconditionNotMet(
                        "This kernel only runs on XPU device."));
163 164 165
  auto x_var = ctx.InputVar("X");
  PADDLE_ENFORCE_NE(x_var, nullptr,
                    platform::errors::Fatal("Cannot get input Variable X"));
166 167 168 169
  PADDLE_ENFORCE_EQ(
      x_var->IsType<framework::LoDTensor>(), true,
      platform::errors::InvalidArgument(
          "XPU only support LoDTensor, Input(X) is not LoDTensor"));
170 171 172 173 174 175 176 177 178 179

  auto x = x_var->Get<framework::LoDTensor>();
  auto* y = ctx.Input<framework::LoDTensor>("Y");
  auto* z = ctx.Output<framework::LoDTensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  int axis = ctx.Attr<int>("axis");
  auto x_dims = x.dims();
  auto y_dims_untrimed = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims_untrimed.size(),
180 181
                    platform::errors::InvalidArgument(
                        "Rank of first input must >= rank of second input."));
182
  axis = (axis == -1 ? x_dims.size() - y_dims_untrimed.size() : axis);
183 184 185
  PADDLE_ENFORCE_EQ(
      axis >= 0 && axis < x_dims.size(), true,
      platform::errors::InvalidArgument("Axis should be in range [0, x_dims)"));
186 187 188 189
  auto y_dims = trim_trailing_singular_dims(y_dims_untrimed);
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
  int pre, n, post, is_common_broadcast;
  get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post, &is_common_broadcast);
190 191 192 193 194

  PADDLE_ENFORCE_NE(is_common_broadcast, 1,
                    platform::errors::Unimplemented(
                        "X's shape should be equal to Y's shape."));

195 196 197 198 199 200 201 202 203 204 205 206 207 208
  int len = pre * n * post;

  const T* x_data = x.data<T>();
  const T* y_data = y->data<T>();
  T* z_data = z->data<T>();
  T* y_broadcast = nullptr;

  auto& dev_ctx =
      ctx.template device_context<paddle::platform::XPUDeviceContext>();

  if (post == 1) {
    if (std::is_same<Functor, XPUAddFunctor<T>>::value) {
      int res = xpu::matrix_vector_add(dev_ctx.x_context(), x_data, y_data,
                                       z_data, pre, n);
209 210 211
      PADDLE_ENFORCE_EQ(
          res, xpu::Error_t::SUCCESS,
          platform::errors::Fatal("XPU kernel error! res = %d", res));
212 213 214 215 216
      return;
    }
    if (std::is_same<Functor, XPUMulFunctor<T>>::value) {
      int res = xpu::matrix_vector_mul(dev_ctx.x_context(), x_data, y_data,
                                       z_data, pre, n);
217 218 219
      PADDLE_ENFORCE_EQ(
          res, xpu::Error_t::SUCCESS,
          platform::errors::Fatal("XPU kernel error! res = %d", res));
220 221 222 223 224 225 226 227 228
      return;
    }
  }

  if (pre != 1 || post != 1) {
    PADDLE_ENFORCE(xpu_malloc(reinterpret_cast<void**>(&y_broadcast),
                              len * sizeof(T)) == XPU_SUCCESS);
    int res = xpu::broadcast_ew(dev_ctx.x_context(), y_data, y_broadcast, pre,
                                n, post, xpu::ElementwiseOp::ASSIGN);
229 230 231
    PADDLE_ENFORCE_EQ(
        res, xpu::Error_t::SUCCESS,
        platform::errors::Fatal("XPU kernel error! res = %d", res));
232 233 234 235 236
    y_data = y_broadcast;
  }

  Functor functor;
  int res = functor(dev_ctx.x_context(), x_data, y_data, z_data, len);
237 238
  PADDLE_ENFORCE_EQ(res, xpu::Error_t::SUCCESS,
                    platform::errors::Fatal("XPU kernel error! res = %d", res));
239 240 241 242 243 244 245 246 247 248

  if (pre != 1 || post != 1) {
    dev_ctx.Wait();
    xpu_free(y_broadcast);
  }
}

}  // namespace operators
}  // namespace paddle
#endif