multi_devices_graph_builder.cc 19.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
23
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
24
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
25
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
26
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Fix bug  
yuyang18 已提交
27
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31 32
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
33 34

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
35 36 37 38
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
39
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
40
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
41 42 43
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
44
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
45
      strategy_(strategy) {
Y
Yu Yang 已提交
46 47 48 49 50
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
51
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
52 53
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
54
      local_scopes_(local_scopes),
Y
yuyang18 已提交
55
      strategy_(strategy) {
Y
Yu Yang 已提交
56
#endif
Y
Yu Yang 已提交
57 58 59
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
60
  balance_vars_.resize(places_.size(), 0);
Y
Yu Yang 已提交
61 62
}

Y
Yu Yang 已提交
63 64
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
65 66
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
67
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
68 69
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
70

Y
Yu Yang 已提交
71 72 73
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
74 75 76
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
77 78
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
79 80
  }
}
Y
fix pe  
Yancey1989 已提交
81 82 83 84

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
85 86
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
87
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
88 89
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
90
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
104 105 106
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
120 121 122
    return false;
  }

Y
Yu Yang 已提交
123 124 125 126
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
127
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
128
    for (auto &var : opvars) {
Y
Yancey1989 已提交
129 130 131
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
132
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
133
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
134
        return true;
T
typhoonzero 已提交
135 136
      }
    }
Y
Yu Yang 已提交
137
    return false;
T
typhoonzero 已提交
138 139
  };

Y
Yancey1989 已提交
140 141
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
142 143
}

Y
Yancey1989 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

Y
Yu Yang 已提交
164 165
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
166
  for (auto *var : program.Block(0).AllVars()) {
Y
Yancey1989 已提交
167
    all_vars_.emplace(var->Name(), var);
C
fix ci  
chengduoZH 已提交
168
  }
C
chengduoZH 已提交
169

Y
Yu Yang 已提交
170
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
171
  SSAGraph &result = *graph;
C
chengduoZH 已提交
172
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
173 174 175 176 177

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
178

Y
fix pe  
Yancey1989 已提交
179 180 181 182
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
183

C
chengduoZH 已提交
184 185 186
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
187
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
188
  bool is_forwarding = true;
189

Y
Yu Yang 已提交
190
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
191 192 193
    if (boost::get<int>(
            op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
194
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
195
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
196
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
197
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
198
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
199 200
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
201 202
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
203
      is_forwarding = false;
Y
Yu Yang 已提交
204
    } else {
205
      int op_dev_id = GetOpDeviceID(*op);
C
chengduoZH 已提交
206 207 208 209 210
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
211
          var_name_on_devices_.emplace(var_name, op_dev_id);
C
chengduoZH 已提交
212 213
        }
      }
C
chengduoZH 已提交
214
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
215
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
216
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
217 218 219
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
220 221 222 223 224 225 226
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
227
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
228 229
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
230 231
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
232 233
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
Y
Yancey1989 已提交
234
                  cur_device_id = GetAppropriateDeviceID({g_name});
Y
yuyang18 已提交
235
                  CreateReduceOp(&result, g_name, cur_device_id);
236
                  var_name_on_devices_.emplace(g_name, cur_device_id);
Y
yuyang18 已提交
237 238 239
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
Y
Yancey1989 已提交
240
                  if (IsSparseGradient(g_name)) {
Y
yuyang18 已提交
241 242 243
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
C
chengduoZH 已提交
244
                    InsertAllReduceOp(&result, g_name);
Y
yuyang18 已提交
245 246 247
                  }
                  break;
              }
C
chengduoZH 已提交
248
            }
Y
yuyang18 已提交
249
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
250 251 252 253 254 255
          }
        }
      }
    }
  }

C
chengduoZH 已提交
256 257 258 259 260 261 262
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
263 264 265 266 267
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
268

Y
Yu Yang 已提交
269 270 271 272 273
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
274
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
275 276
}

Y
Yancey1989 已提交
277 278 279
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
280 281 282
    return true;
  }
  return false;
283 284
}

285 286 287 288 289 290 291 292 293 294 295 296 297
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
#ifdef PADDLE_WITH_CUDA
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

C
chengduoZH 已提交
298 299
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
300
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
301 302 303 304 305 306 307
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
308
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
309 310 311 312
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
313 314
    SetCommunicationContext(op_handle, p);
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

C
chengduoZH 已提交
329 330
void MultiDevSSAGraphBuilder::InsertAllReduceOp(SSAGraph *result,
                                                const std::string &og) const {
Y
Yu Yang 已提交
331 332
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
333
      new AllReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
334
#else
335
  result->ops_.emplace_back(new AllReduceOpHandle(local_scopes_, places_));
C
chengduoZH 已提交
336
#endif
Y
Yu Yang 已提交
337 338 339 340
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
341
    SetCommunicationContext(op_handle, p);
Y
Yu Yang 已提交
342
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
343 344
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

365
int MultiDevSSAGraphBuilder::GetOpDeviceID(const OpDesc &op) const {
Y
yuyang18 已提交
366
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
367 368 369
    return -1;
  }

370 371 372 373
  for (auto &varname : op.InputArgumentNames()) {
    int dev_id = GetVarDeviceID(varname);
    if (dev_id != -1) {
      return dev_id;
C
chengduoZH 已提交
374 375
    }
  }
376 377 378 379 380 381
  return -1;
}

int MultiDevSSAGraphBuilder::GetVarDeviceID(const std::string &varname) const {
  auto got = var_name_on_devices_.find(varname);
  return got == var_name_on_devices_.end() ? -1 : got->second;
C
chengduoZH 已提交
382 383
}

Y
Yu Yang 已提交
384 385 386 387
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
388 389 390
    auto *communication_dev_ctx =
        nccl_ctxs_ ? nccl_ctxs_->DevCtx(places_[i])
                   : platform::DeviceContextPool::Instance().Get(places_[i]);
Y
Yu Yang 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
413 414 415
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
416 417 418
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
419
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
420 421 422
  }
}

C
chengduoZH 已提交
423 424 425
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
426 427 428 429 430 431 432 433 434 435
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
436 437
    SetCommunicationContext(op_handle, p);
    auto &vars = result->vars_[i][og];
C
chengduoZH 已提交
438 439 440 441 442 443 444 445 446 447 448 449
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
450 451
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
452
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
453
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
454 455 456
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
457
      op->AddInput(dep_var);
Y
Yancey1989 已提交
458 459 460 461
    }
  }
}

Y
Yancey1989 已提交
462
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
Y
Yancey1989 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                                                const OpDesc &op) const {
  int op_dev_id = -1;
  if (op.Type() == "split_byref") {
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(op.InputArgumentNames());
      for (auto &varname : op.InputArgumentNames()) {
        var_name_on_devices_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : op.OutputArgumentNames()) {
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
  } else if (op.Type() == "concat") {
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
  } else {
    PADDLE_ENFORCE(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s", op.Type());

  CreateComputationalOp(result, op, op_dev_id);
Y
Yancey1989 已提交
488 489 490 491 492
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

Y
Yancey1989 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
  int op_dev_id = -1;
  if (op.Type() == "send") {
    op_dev_id = GetVarDeviceID(op.InputArgumentNames()[0]);
    // the variable name which contains .block means it was splited by
    // split_byref op
    // so that we can balance the variable blocks to all the pserver instances.
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
        op.InputArgumentNames()[0].find(".block") == std::string::npos) {
      op_dev_id = GetAppropriateDeviceID(op.InputArgumentNames());
      for (auto &varname : op.InputArgumentNames()) {
        var_name_on_devices_.emplace(varname, op_dev_id);
      }
    }
  } else if (op.Type() == "recv") {
    op_dev_id = GetAppropriateDeviceID(op.OutputArgumentNames());
    for (auto &varname : op.OutputArgumentNames()) {
      var_name_on_devices_.emplace(varname, op_dev_id);
    }
  } else {
    // send_barrier and fetch_barrier op can be scheduled on device 0
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
                 op.Type());

  result->ops_.emplace_back(new RPCOpHandle(op, local_scopes_[op_dev_id],
                                            op.Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
523

Y
Yancey1989 已提交
524
  if (op.Type() == "send_barrier") {
525
    ConnectOp(result, result->ops_.back().get(), "send");
Y
Yancey1989 已提交
526
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
527
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
528
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
529
    ConnectOp(result, result->ops_.back().get(), "recv");
530
  } else if (op.Type() == "send") {
Y
Yancey1989 已提交
531 532 533
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
534
        "rpc op should be in ["
535
        "send, send_barrier. recv, fetch_barrier]");
Y
Yancey1989 已提交
536 537
  }

Y
Yancey1989 已提交
538
  CreateOpHandleIOs(result, op, op_dev_id);
Y
Yu Yang 已提交
539 540 541
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
542 543
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
544 545 546
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
547
}
Y
Yu Yang 已提交
548 549 550
}  // namespace details
}  // namespace framework
}  // namespace paddle