locality_aware_nms_op.cc 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

#include <glog/logging.h>
15

16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/nms_util.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class LocalityAwareNMSOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
30 31 32 33 34 35
    OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes",
                   "locality_aware_nms");
    OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores",
                   "locality_aware_nms");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "locality_aware_nms");
36 37 38 39 40 41

    auto box_dims = ctx->GetInputDim("BBoxes");
    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();

    if (ctx->IsRuntime()) {
42 43 44 45 46 47 48 49 50 51 52 53 54
      PADDLE_ENFORCE_EQ(
          score_size, 3,
          platform::errors::InvalidArgument(
              "The rank of Input(Scores) must be 3. But received %d.",
              score_size));
      PADDLE_ENFORCE_EQ(
          box_dims.size(), 3,
          platform::errors::InvalidArgument(
              "The rank of Input(BBoxes) must be 3. But received %d.",
              box_dims.size()));
      PADDLE_ENFORCE_EQ(
          box_dims[2] == 4 || box_dims[2] == 8 || box_dims[2] == 16 ||
              box_dims[2] == 24 || box_dims[2] == 32,
55 56 57 58 59 60 61 62 63 64 65
          true,
          platform::errors::InvalidArgument(
              "The last dimension of Input(BBoxes) must be 4 or 8, "
              "represents the layout of coordinate "
              "[xmin, ymin, xmax, ymax] or "
              "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
              "8 points: [xi, yi] i= 1,2,...,8 or "
              "12 points: [xi, yi] i= 1,2,...,12 or "
              "16 points: [xi, yi] i= 1,2,...,16. "
              "But received %d.",
              box_dims[2]));
66 67 68 69 70 71 72 73
      PADDLE_ENFORCE_EQ(
          box_dims[1], score_dims[2],
          platform::errors::InvalidArgument(
              "The 2nd dimension of Input(BBoxes) must be equal to "
              "last dimension of Input(Scores), which represents the "
              "predicted bboxes. But received the 2nd dimension of "
              "Input(BBoxes) was %d, last dimension of Input(Scores) was %d.",
              box_dims[1], score_dims[2]));
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    }
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
    ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
        platform::CPUPlace());
  }
};

template <class T>
void PolyWeightedMerge(const T* box1, T* box2, const T score1, const T score2,
                       const size_t box_size) {
  for (size_t i = 0; i < box_size; ++i) {
    box2[i] = (box1[i] * score1 + box2[i] * score2) / (score1 + score2);
  }
}

template <class T>
void GetMaxScoreIndexWithLocalityAware(
    T* scores, T* bbox_data, int64_t box_size, const T threshold, int top_k,
    int64_t num_boxes, std::vector<std::pair<T, int>>* sorted_indices,
    const T nms_threshold, const bool normalized) {
  std::vector<bool> skip(num_boxes, true);
  int index = -1;
  for (int64_t i = 0; i < num_boxes; ++i) {
    if (index > -1) {
      T overlap = T(0.);
      if (box_size == 4) {
        overlap = JaccardOverlap<T>(bbox_data + i * box_size,
                                    bbox_data + index * box_size, normalized);
      }
      // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
      if (box_size == 8 || box_size == 16 || box_size == 24 || box_size == 32) {
        overlap =
            PolyIoU<T>(bbox_data + i * box_size, bbox_data + index * box_size,
                       box_size, normalized);
      }

      if (overlap > nms_threshold) {
        PolyWeightedMerge(bbox_data + i * box_size,
                          bbox_data + index * box_size, scores[i],
                          scores[index], box_size);
        scores[index] += scores[i];
      } else {
        skip[index] = false;
        index = i;
      }
    } else {
      index = i;
    }
  }

  if (index > -1) {
    skip[index] = false;
  }
  for (int64_t i = 0; i < num_boxes; ++i) {
    if (scores[i] > threshold && skip[i] == false) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
    sorted_indices->resize(top_k);
  }
}

template <typename T>
class LocalityAwareNMSKernel : public framework::OpKernel<T> {
 public:
  void LocalityAwareNMSFast(Tensor* bbox, Tensor* scores,
                            const T score_threshold, const T nms_threshold,
                            const T eta, const int64_t top_k,
                            std::vector<int>* selected_indices,
                            const bool normalized) const {
    // The total boxes for each instance.
    int64_t num_boxes = bbox->dims()[0];
    // 4: [xmin ymin xmax ymax]
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
    int64_t box_size = bbox->dims()[1];

    std::vector<std::pair<T, int>> sorted_indices;
    T adaptive_threshold = nms_threshold;
    T* bbox_data = bbox->data<T>();
    T* scores_data = scores->data<T>();

    GetMaxScoreIndexWithLocalityAware(
        scores_data, bbox_data, box_size, score_threshold, top_k, num_boxes,
        &sorted_indices, nms_threshold, normalized);

    selected_indices->clear();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
      for (size_t k = 0; k < selected_indices->size(); ++k) {
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
            overlap =
                JaccardOverlap<T>(bbox_data + idx * box_size,
                                  bbox_data + kept_idx * box_size, normalized);
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
                                 bbox_data + kept_idx * box_size, box_size,
                                 normalized);
          }
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
    //    delete bbox_data;
  }

  void LocalityAwareNMS(const framework::ExecutionContext& ctx, Tensor* scores,
                        Tensor* bboxes, const int scores_size,
                        std::map<int, std::vector<int>>* indices,
                        int* num_nmsed_out) const {
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
    bool normalized = ctx.Attr<bool>("normalized");
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));

    int num_det = 0;

    int64_t class_num = scores->dims()[0];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;

      score_slice = scores->Slice(c, c + 1);
      bbox_slice = *bboxes;

      LocalityAwareNMSFast(&bbox_slice, &score_slice, score_threshold,
                           nms_threshold, nms_eta, nms_top_k, &((*indices)[c]),
                           normalized);
      num_det += (*indices)[c].size();
    }

    *num_nmsed_out = num_det;
    const T* scores_data = scores->data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
      const T* sdata;
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
      for (const auto& it : *indices) {
        int label = it.first;

        sdata = scores_data + label * scores->dims()[1];

        const std::vector<int>& label_indices = it.second;
        for (size_t j = 0; j < label_indices.size(); ++j) {
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }

      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
    }
  }

  void LocalityAwareNMSOutput(
      const platform::DeviceContext& ctx, const Tensor& scores,
      const Tensor& bboxes,
      const std::map<int, std::vector<int>>& selected_indices,
      const int scores_size, Tensor* outs, int* oindices = nullptr,
      const int offset = 0) const {
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
      const std::vector<int>& indices = it.second;
      sdata = scores_data + label * predict_dim;
      for (size_t j = 0; j < indices.size(); ++j) {
        int idx = indices[j];

        odata[count * out_dim] = label;  // label
        const T* bdata;
        bdata = bboxes_data + idx * box_size;
        odata[count * out_dim + 1] = sdata[idx];  // score
        if (oindices != nullptr) {
          oindices[count] = offset + idx;
        }

        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
        count++;
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* boxes_input = ctx.Input<LoDTensor>("BBoxes");
    auto* scores_input = ctx.Input<LoDTensor>("Scores");
    auto* outs = ctx.Output<LoDTensor>("Out");
Z
Zhang Jun 已提交
319
    auto& score_dims = scores_input->dims();
320 321 322 323 324
    auto score_size = score_dims.size();
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();

    LoDTensor scores;
    LoDTensor boxes;
325 326 327 328
    paddle::framework::TensorCopySync(*scores_input, platform::CPUPlace(),
                                      &scores);
    paddle::framework::TensorCopySync(*boxes_input, platform::CPUPlace(),
                                      &boxes);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes.dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
    Tensor boxes_slice, scores_slice;
    int n = batch_size;
    for (int i = 0; i < n; ++i) {
      scores_slice = scores.Slice(i, i + 1);
      scores_slice.Resize({score_dims[1], score_dims[2]});
      boxes_slice = boxes.Slice(i, i + 1);
      boxes_slice.Resize({score_dims[2], box_dim});

      std::map<int, std::vector<int>> indices;
      LocalityAwareNMS(ctx, &scores_slice, &boxes_slice, score_size, &indices,
                       &num_nmsed_out);
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
      T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
      od[0] = -1;
      batch_starts = {0, 1};
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
      int offset = 0;
      int* oindices = nullptr;
      for (int i = 0; i < n; ++i) {
        scores_slice = scores.Slice(i, i + 1);
        boxes_slice = boxes.Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice.Resize({score_dims[2], box_dim});

        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
          LocalityAwareNMSOutput(dev_ctx, scores_slice, boxes_slice,
                                 all_indices[i], score_dims.size(), &out,
                                 oindices, offset);
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);
    outs->set_lod(lod);
  }
};

class LocalityAwareNMSOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("BBoxes",
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
             "[N, M, 4 or 8 16 24 32] represents the "
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
             "[xmin, ymin, xmax, ymax], when box size equals to 4.");
    AddInput("Scores",
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
             " Please note, M is equal to the 2nd dimension of BBoxes. ");
    AddAttr<int>(
        "background_label",
        "(int, default: -1) "
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
        .SetDefault(-1);
    AddAttr<float>("score_threshold",
                   "(float) "
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
T
tianshuo78520a 已提交
412
                 "confidences after the filtering detections based on "
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                 "score_threshold");
    AddAttr<float>("nms_threshold",
                   "(float, default: 0.3) "
                   "The threshold to be used in NMS.")
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
                   "The parameter for adaptive NMS.")
        .SetDefault(1.0);
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
    AddAttr<bool>("normalized",
                  "(bool, default true) "
                  "Whether detections are normalized.")
        .SetDefault(true);
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
This operator is to do locality-aware non maximum suppression (NMS) on a batched
of boxes and scores.
Firstly, this operator merge box and score according their IOU(intersection over union).
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image.

Please get more information from the following papers:
https://arxiv.org/abs/1704.03155.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(
    locality_aware_nms, ops::LocalityAwareNMSOp, ops::LocalityAwareNMSOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(locality_aware_nms, ops::LocalityAwareNMSKernel<float>,
                       ops::LocalityAwareNMSKernel<double>);