trainer.h 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wanghuancoder 已提交
17
#include <ctime>
18
#include <fstream>
W
wanghuancoder 已提交
19
#include <map>
20 21 22 23 24 25 26
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
27
#include "paddle/fluid/framework/data_set.h"
28
#include "paddle/fluid/framework/device_worker.h"
T
Thunderbrook 已提交
29 30
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/framework/heter_service.h"
31 32 33 34 35 36
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
37
#include "paddle/fluid/platform/port.h"
38 39 40 41

namespace paddle {
namespace framework {

W
wanghuancoder 已提交
42 43 44 45 46 47
class Dataset;
class LoDTensor;
class ProgramDesc;
class PullDenseWorker;
class Scope;
class VarDesc;
48
class DeviceWorker;
W
wanghuancoder 已提交
49 50 51
template <class T>
class ChannelObject;

52 53 54 55 56 57 58
class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
59
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
60
  virtual void Initialize(const TrainerDesc& trainer_desc,
61
                          Dataset* data_set) = 0;
62 63 64 65 66
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
67
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
68 69
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
70 71

 protected:
H
hutuxian 已提交
72 73 74 75
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

76 77
  Scope* root_scope_;
  bool debug_;
78
  Dataset* dataset_ptr_;
T
Thunderbrook 已提交
79
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
80 81 82

  // For dump param or field
  bool need_dump_field_ = false;
Y
yaoxuefeng 已提交
83
  std::string user_define_dump_filename_;
H
hutuxian 已提交
84 85 86 87 88 89 90 91
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
92 93 94 95 96 97 98 99 100
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
101
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
102 103
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
104
  virtual void InitOtherEnv(const ProgramDesc& main_program);
105 106
  virtual void Run();
  virtual void Finalize();
107
  virtual void InitDumpEnv();
108
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
109
  virtual std::string GetDumpPath(int tid);
110

T
Thunderbrook 已提交
111 112 113 114 115 116 117
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
#ifdef PADDLE_WITH_HETERPS

  void MergeDenseParam();
#endif

118 119 120
 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
121
  std::vector<DataFeed*> readers_;
122
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
123
  std::vector<std::string> need_merge_var_names_;
T
Thunderbrook 已提交
124 125 126
#ifdef PADDLE_WITH_HETERPS
  std::vector<platform::Place> places_;
#endif
127 128 129
  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
130 131 132 133 134 135
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
136
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
137 138
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
139
  virtual void InitOtherEnv(const ProgramDesc& main_program);
140
  virtual void Run();
141
  virtual void Finalize();
142 143
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
144
  virtual void InitDumpEnv();
145
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
146
  virtual void RegisterHeterCallback();
147 148 149 150 151

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

152 153
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_HIP || \
     defined PADDLE_WITH_XPU) &&                            \
T
Thunderbrook 已提交
154
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
155 156 157 158 159 160 161 162 163 164 165 166
class HeterServiceContext {
 public:
  HeterServiceContext() {}
  virtual ~HeterServiceContext() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  void Reset() { push_dense_status_.clear(); }
  int place_num_;
  Scope* scope_{nullptr};
167 168 169

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  gpuEvent_t event_;
T
Thunderbrook 已提交
170
#endif
T
Thunderbrook 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  std::vector<OperatorBase*> ops_;
  std::vector<::std::future<int32_t>> push_dense_status_;
};

class HeterXpuTrainer : public TrainerBase {
 public:
  HeterXpuTrainer() {}
  virtual ~HeterXpuTrainer() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void DumpWork(int tid);
  virtual void RegisterServiceHandler();
  virtual int RunTask(const HeterRequest* request, HeterResponse* response);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
T
Thunderbrook 已提交
197 198
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
T
Thunderbrook 已提交
199
  template <typename T>
200
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
201 202
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
203
                   gpuStream_t stream);
T
Thunderbrook 已提交
204 205 206 207 208
#endif
#ifdef PADDLE_WITH_XPU
  void HeterMemCpy(LoDTensor* thread_tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place);
#endif
T
Thunderbrook 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  int EndPass(const HeterRequest* request, HeterResponse* response);
  int StopService(const HeterRequest* request, HeterResponse* response);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  bool running_;
  paddle::platform::Place place_;
  std::mutex mutex_;
  ProgramDesc program_;
  std::condition_variable cond_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<OperatorBase*> ops_;
  std::vector<std::string> op_names_;
  std::vector<Scope*> place_scopes_;
  BtObjectPool<HeterServiceContext> object_pool_;
  std::vector<platform::Place> places_;
235 236 237
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
  std::vector<gpuEvent_t> events_;
T
Thunderbrook 已提交
238
#endif
T
Thunderbrook 已提交
239
};
T
Thunderbrook 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

class HeterBoxTrainer : public TrainerBase {
 public:
  HeterBoxTrainer() {}
  virtual ~HeterBoxTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
  template <typename T>
260
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
261 262
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
263
                   gpuStream_t stream);
T
Thunderbrook 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
#endif
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> pull_threads_;
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
285 286 287
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
  std::vector<gpuEvent_t> events_;
T
Thunderbrook 已提交
288 289
#endif
};
T
Thunderbrook 已提交
290 291
#endif

292 293
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
class PSGPUTrainer : public TrainerBase {
 public:
  PSGPUTrainer() {}
  virtual ~PSGPUTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}

  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  Dataset* dataset_;
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
};
#endif

334
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
335
    defined(PADDLE_WITH_ASCEND_CL)
H
hutuxian 已提交
336 337 338 339 340 341 342
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
343
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
344 345
  void Run() override;
  void Finalize() override;
346
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
347 348
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
349
  void GetSkipVars(const ProgramDesc& main_program);
H
hutuxian 已提交
350 351

 protected:
L
lilong12 已提交
352
  int num_microbatches_;
353 354
  platform::Place place_;
  std::vector<std::string> skip_vars_;
L
lilong12 已提交
355
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
356

357 358 359 360 361
  std::future<void> section_thread_;
  std::shared_ptr<paddle::framework::DeviceWorker> worker_;
  Scope* minibatch_scope_;
  // microbatch_scopes_: [microbatch_id]
  std::vector<Scope*> microbatch_scopes_;
L
lilong12 已提交
362

363 364
  void CopyParameters(int microbatch_id, const ProgramDesc& program,
                      const platform::Place& place);
H
hutuxian 已提交
365 366
};
#endif
L
lilong12 已提交
367

368 369
}  // namespace framework
}  // namespace paddle