uniform_random_op.cu 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15
#include <thrust/random.h>
#include <thrust/transform.h>
L
Leo Chen 已提交
16

Y
yaoxuefeng 已提交
17
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
20
#include "paddle/fluid/operators/uniform_random_op.h"
Q
qijun 已提交
21 22 23 24 25 26 27
namespace paddle {
namespace operators {

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;
28 29 30 31 32 33 34 35 36 37 38
  T diag_val_;
  unsigned int diag_num_;
  unsigned int diag_step_;
  __host__ __device__ UniformGenerator(T min, T max, int seed, int diag_num,
                                       int diag_step, T diag_val)
      : min_(min),
        max_(max),
        seed_(seed),
        diag_num_(diag_num),
        diag_step_(diag_step),
        diag_val_(diag_val) {}
Q
qijun 已提交
39 40 41 42 43 44

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
45 46 47 48 49 50
    T out = dist(rng);
    unsigned int remainder = n % (diag_step_ + 1);
    if (remainder == 0 && diag_num_ > n / (diag_step_ + 1)) {
      out = diag_val_;
    }
    return out;
Q
qijun 已提交
51 52 53 54 55 56 57
  }
};

// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
58
class GPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
59 60
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yancey1989 已提交
61
    framework::Tensor* tensor = nullptr;
Y
fix ci  
Yancey1989 已提交
62
    auto out_var = context.OutputVar("Out");
63 64 65 66 67 68
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        context.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || context.HasInput("ShapeTensor")) {
      if (context.HasInput("ShapeTensor")) {
        auto* shape_tensor = context.Input<framework::Tensor>("ShapeTensor");
69
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
70
      } else if (list_new_shape_tensor.size() > 0) {
71
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
72 73 74 75 76 77
      }
    }

    if (out_var->IsType<framework::SelectedRows>()) {
      auto* selected_rows = out_var->GetMutable<framework::SelectedRows>();
      tensor = selected_rows->mutable_value();
T
tangwei12 已提交
78
      auto shape = context.Attr<std::vector<int64_t>>("shape");
79
      if (!new_shape.empty()) shape = new_shape;
Y
Yancey1989 已提交
80
      tensor->Resize(framework::make_ddim(shape));
81 82 83 84
      selected_rows->mutable_rows()->reserve(shape[0]);
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
      if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
Y
Yancey1989 已提交
85
    } else {
Y
Yancey1989 已提交
86 87
      PADDLE_THROW(
          "uniform_random_op's output only"
T
tangwei12 已提交
88
          "supports SelectedRows and LoDTensor");
Y
Yancey1989 已提交
89
    }
Q
qijun 已提交
90
    T* data = tensor->mutable_data<T>(context.GetPlace());
Y
Pass CI  
Yu Yang 已提交
91
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
L
Leo Chen 已提交
92 93 94 95

    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Q
qijun 已提交
96
    }
L
Leo Chen 已提交
97

Y
Yu Yang 已提交
98 99
    T min = static_cast<T>(context.Attr<float>("min"));
    T max = static_cast<T>(context.Attr<float>("max"));
100 101 102 103 104
    unsigned int diag_num =
        static_cast<unsigned int>(context.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(context.Attr<int>("diag_step"));
    T diag_val = static_cast<T>(context.Attr<float>("diag_val"));
Q
qijun 已提交
105
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
106
    int64_t size = tensor->numel();
107 108 109 110
    thrust::transform(
        index_sequence_begin, index_sequence_begin + size,
        thrust::device_ptr<T>(data),
        UniformGenerator<T>(min, max, seed, diag_num, diag_step, diag_val));
Q
qijun 已提交
111 112 113 114 115
  }
};

}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
116

117 118 119 120 121 122
REGISTER_OP_CUDA_KERNEL(uniform_random,
                        paddle::operators::GPUUniformRandomKernel<float>,
                        paddle::operators::GPUUniformRandomKernel<double>);
REGISTER_OP_CUDA_KERNEL(uniform_random_batch_size_like,
                        paddle::operators::GPUUniformRandomKernel<float>,
                        paddle::operators::GPUUniformRandomKernel<double>);