fusion_seq_concat_fc_op.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_seq_concat_fc_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {

void FusionSeqConcatFCOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
26 27
  PADDLE_ENFORCE_GT(ctx->Inputs("X").size(), 1UL,
                    "Inputs(X) of FusionSeqConcatFCOp should larger than 1.");
T
tensor-tang 已提交
28 29 30 31 32 33 34
  PADDLE_ENFORCE(ctx->HasInput("FCWeight"),
                 "Input(FCWeight) of FusionSeqConcatFC should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Output(Out) of FusionSeqConcatFC should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("FCOut"),
                 "Output(FCOut) of FusionSeqConcatFC should not be null.");

T
tensor-tang 已提交
35 36 37 38 39 40 41
  auto ins_dims = ctx->GetInputsDim("X");
  auto w_dims = ctx->GetInputDim("FCWeight");  // (M0+M1+M2+..) x D
  PADDLE_ENFORCE_EQ(w_dims.size(), 2UL, "Input(FCWeight)'s rank must be 2.");
  const int D = w_dims[1];
  int sum = ins_dims[0][1];
  for (size_t i = 1; i < ins_dims.size(); ++i) {
    sum += ins_dims[i][1];
42
  }
T
tensor-tang 已提交
43 44 45 46 47 48 49
  PADDLE_ENFORCE_EQ(sum, w_dims[0],
                    "FC height should be sum of all inputs width.");
  if (ctx->HasInput("FCBias")) {
    auto b_dims = ctx->GetInputDim("FCBias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(FCBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1, "FCBias shapes must be 1 * %d.", D);
    PADDLE_ENFORCE_EQ(b_dims[1], D, "FCBias shapes must be 1 * %d.", D);
50 51
  }

T
tensor-tang 已提交
52 53 54 55
  ctx->SetOutputDim("Out", {ins_dims[0][0], D});
  // fcout should be reshape when run since can not get lod in infershape
  // explicit share the ref lod
  ctx->ShareLoD("X", "Out", 0);
56 57 58 59 60 61 62 63 64 65 66
}

framework::OpKernelType FusionSeqConcatFCOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionSeqConcatFCOpMaker::Make() {
  AddInput("X",
T
tensor-tang 已提交
67 68 69 70 71 72
           "(LoDTensor) input LodDTensors, the first one must be have ref lod "
           "for sequence expand, and the rest input should have same lod.")
      .AsDuplicable();
  AddInput("FCWeight", "(Tensor) the weights of fc.");
  AddInput("FCBias", "(Tensor, optional) the bias of fc.").AsDispensable();
  AddOutput("Out", "(LoDTensor) Output LodTensor.");
73
  AddOutput(
T
tensor-tang 已提交
74 75 76
      "FCOut",
      "(Tensor) the intermediate tensor to keep the result of fc."
      "Shape is (N x D), where N is the batch size, D is the output dim of fc")
77
      .AsIntermediate();
T
tensor-tang 已提交
78 79 80 81 82
  AddAttr<std::string>("fc_activation",
                       "(string, default: identity)"
                       "The activation for the result of fc."
                       "`identity` by default.")
      .SetDefault("identity")
83 84 85 86
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
Fusion Sequence expand + concat + fc Operator.

T
tensor-tang 已提交
87
All below conditions should be meet:
88

T
tensor-tang 已提交
89
The ref_level of seq_expand should be 0.
90

T
tensor-tang 已提交
91 92 93 94 95 96 97
The ref lod of seq_expand level is the first input of concat.

The other inputs should have same lod and same batch size of ref lod.

The seq len of other inputs should be 1.

The concat axis should be 1.
98 99 100 101 102 103 104 105 106

)DOC");
}

template <typename T>
class FusionSeqConcatFCKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
107
    auto ins = ctx.MultiInput<LoDTensor>("X");
T
tensor-tang 已提交
108 109 110 111 112
    auto* w = ctx.Input<Tensor>("FCWeight");
    auto* b = ctx.Input<Tensor>("FCBias");
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* fc_out = ctx.Output<Tensor>("FCOUT");

T
tensor-tang 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    auto* ref_in = ins[0];
    auto ref_lod = ref_in->lod();
    auto in1_lod = ins[1]->lod();
    auto ref_dims = ref_in->dims();  // T x M0
    auto in1_dims = ins[1]->dims();  // N x M1
    auto w_dims = w->dims();
    const int N = ref_lod[0].size() - 1;
    const int total_T = ref_dims[0];
    const int M0 = ref_dims[1];
    const int M1 = in1_dims[1];
    const int D = w_dims[1];

    // some check and fcout should be reshape here
    // since infershape can not get lod info
    PADDLE_ENFORCE_EQ(ref_lod.size(), 1UL, "Only support input lod size is 1.");
    PADDLE_ENFORCE_EQ(in1_lod.size(), 1UL, "Only support input lod size is 1.");
    PADDLE_ENFORCE_EQ(in1_lod[0].size() - 1, N,
                      "Batch size of all inputs should be equal.");
    PADDLE_ENFORCE_EQ(in1_lod[0][N], N,
                      "Seq_length of other inputs should be 1.");
    PADDLE_ENFORCE_EQ(in1_dims[0], N, "input height should be batch size.");
    for (size_t i = 2; i < ins.size(); ++i) {
      PADDLE_ENFORCE_EQ(ins[i]->dims()[0], N,
                        "All other inputs height should be equal");
      PADDLE_ENFORCE_EQ(ins[i]->lod(), in1_lod,
                        "All other inputs should have same lod");
    }
    fc_out->Resize({N, D});

T
tensor-tang 已提交
142 143
    std::function<void(const int, const T*, T*)> fc_act;
    auto& fc_act_str = ctx.Attr<std::string>("fc_activation");
144 145
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
T
tensor-tang 已提交
146
      fc_act = act_functor(fc_act_str);
147 148
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
T
tensor-tang 已提交
149
      fc_act = act_functor(fc_act_str);
150 151
    }

T
tensor-tang 已提交
152
    const T* ref_in_data = ref_in->data<T>();
T
tensor-tang 已提交
153 154 155
    const T* in1_data = ins[1]->data<T>();
    const T* w_data = w->data<T>();
    T* out_data = out->mutable_data<T>(ctx.GetPlace());
156 157 158
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
159 160 161 162 163 164
    math::FCCompute<DeviceContext, T>(blas, total_T, D, M0, ref_in_data, w_data,
                                      out_data, b ? b->data<T>() : NULL);
    w_data = w_data + M0 * D;
    // first one use write on
    blas.MatMul(N, D, M1, in1_data, w_data, fc_out_data);
    w_data = w_data + M1 * D;
T
tensor-tang 已提交
165
    for (size_t i = 2; i < ins.size(); ++i) {
T
tensor-tang 已提交
166 167 168 169 170 171 172 173
      // add on
      const T* in_data = ins[i]->data<T>();
      const int K = ins[i]->dims()[1];
      blas.GEMM(CblasNoTrans, CblasNoTrans, N, D, K, static_cast<T>(1), in_data,
                K, w_data, D, static_cast<T>(1), fc_out_data, D);
      w_data = w_data + K * D;
    }

174
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
175
      int seq_len = ref_lod[0][i + 1] - ref_lod[0][i];
T
tensor-tang 已提交
176
      T* src = fc_out_data + i * D;
177
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
178 179
        blas.VADD(D, out_data, src, out_data);
        out_data = out_data + D;
180 181
      }
    }
T
tensor-tang 已提交
182

T
tensor-tang 已提交
183
    fc_act(total_T * D, out_data, out_data);
184 185 186 187 188 189 190 191 192 193 194 195 196 197
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_seq_concat_fc, ops::FusionSeqConcatFCOp,
                  ops::FusionSeqConcatFCOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(fusion_seq_concat_fc,
                       ops::FusionSeqConcatFCKernel<float>,
                       ops::FusionSeqConcatFCKernel<double>);