test_auto_parallel_reshard.py 13.4 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
24
from paddle.distributed.fleet import auto
25
from paddle.distributed.auto_parallel.completion import Completer
26
from paddle.distributed.auto_parallel.dist_context import DistributedContext
C
caozhou 已提交
27
from paddle.distributed import fleet
28
from paddle.distributed.auto_parallel.parallelizer import AutoParallelizer
C
caozhou 已提交
29
from paddle.distributed.auto_parallel.partitioner import Partitioner
30
from paddle.distributed.auto_parallel.reshard import Resharder
31
from paddle.distributed.auto_parallel.process_group import _g_process_group_map, ProcessGroup
32
from paddle.distributed.auto_parallel.utils import print_program_with_dist_attr
C
caozhou 已提交
33 34 35 36 37 38 39 40 41

paddle.enable_static()
_global_parallel_strategy = None
_global_process_mesh = None
PP_MESH_0 = None
PP_MESH_1 = None


class MLPLayer(nn.Layer):
42

C
caozhou 已提交
43 44 45 46 47 48 49
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
50 51
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
C
caozhou 已提交
52 53
        bias_attr = None

54 55 56 57 58 59 60 61
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
C
caozhou 已提交
62 63 64 65
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)

    def forward(self, input):
        if _global_parallel_strategy == "pp":
66 67
            auto.shard_tensor(self.linear0.weight, PP_MESH_0, [None, None])
            auto.shard_tensor(self.linear1.weight, PP_MESH_1, [None, None])
C
caozhou 已提交
68
        else:
69 70 71 72
            auto.shard_tensor(self.linear0.weight, _global_process_mesh,
                              [None, None])
            auto.shard_tensor(self.linear1.weight, _global_process_mesh,
                              [None, None])
C
caozhou 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)

        return out


def mlp_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
88 89 90 91 92 93
        input = static.data(name="input",
                            shape=[batch_size, hidden_size],
                            dtype='float32')
        label = static.data(name="label",
                            shape=[batch_size, 1],
                            dtype='float32')
C
caozhou 已提交
94 95

        if _global_parallel_strategy == "pp":
96 97
            auto.shard_tensor(input, PP_MESH_0, [None, None])
            auto.shard_tensor(label, PP_MESH_1, [None, None])
C
caozhou 已提交
98
        elif _global_parallel_strategy == "dp":
99
            auto.shard_tensor(input, _global_process_mesh, ["x", None])
C
caozhou 已提交
100
        else:
101
            auto.shard_tensor(input, _global_process_mesh, [None, None])
102 103 104 105

        mlp = MLPLayer(hidden_size=hidden_size,
                       intermediate_size=4 * hidden_size,
                       initializer_range=0.02)
C
caozhou 已提交
106 107 108 109 110 111 112 113

        predict = mlp(input)
        error_cost = paddle.nn.functional.square_error_cost(predict, label)
        loss = paddle.mean(error_cost)

    return loss, train_program, start_program


114 115 116 117 118
def get_dist_prog(train_program,
                  startup_program,
                  dist_context,
                  rank_id,
                  change_process_mesh=False):
C
caozhou 已提交
119 120 121
    loss, train_program, startup_program = mlp_forward(train_program,
                                                       startup_program)

122 123 124 125 126 127
    fleet._user_defined_strategy = fleet.DistributedStrategy()
    fleet.user_defined_optimizer = paddle.fluid.optimizer.AdamOptimizer()
    parallelizer = AutoParallelizer(fleet)
    parallelizer._dist_context = dist_context

    # serial forward & backward completion
128 129 130
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
        train_program)
131
    dist_context.block_state.parse_forward_blocks(complete_train_program)
132 133 134
    if change_process_mesh:
        global PP_MESH_1
        dist_context.get_tensor_dist_attr_for_program(
135 136
            train_program.global_block(
            ).vars["gelu_0.tmp_0"]).process_mesh = PP_MESH_1
137

138 139 140 141 142 143
    params_grads = parallelizer._generate_backward(complete_train_program,
                                                   startup_program,
                                                   loss,
                                                   parameter_list=None,
                                                   no_grad_set=None,
                                                   callbacks=None)
144

C
caozhou 已提交
145
    # logical partition
146 147 148 149 150 151 152
    partitioner = Partitioner(dist_context, rank_id)
    auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads = partitioner.partition(
        complete_train_program, startup_program, params_grads)

    partitioned_optimize_ops = parallelizer._apply_optimize(
        auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads)

153
    return auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads
C
caozhou 已提交
154 155 156 157 158 159


def check_backward_dist_attr(dist_context, dist_main_prog, op_need_check):
    has_dist_attr = True
    vars = dist_main_prog.global_block().vars

160 161
    op_dist_attr = dist_context.get_op_dist_attr_for_program(op_need_check)
    if not op_dist_attr or not op_dist_attr.process_mesh:
C
caozhou 已提交
162 163 164 165
        has_dist_attr = False

    for var_name in op_need_check.input_arg_names:
        if not op_dist_attr.get_input_dims_mapping(var_name) or \
166 167
        not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).dims_mapping or \
        not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).process_mesh:
C
caozhou 已提交
168 169 170 171 172
            has_dist_attr = False
            break

    if has_dist_attr:
        for var_name in op_need_check.output_arg_names:
173 174
            if not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).dims_mapping or \
            not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).process_mesh:
C
caozhou 已提交
175 176 177 178 179 180 181 182 183 184
                has_dist_attr = False
                break

    return has_dist_attr


def check_send_recv_result(dist_main_prog, rank_id):
    send_result = False
    recv_result = False
    ops = dist_main_prog.global_block().ops
185

C
caozhou 已提交
186 187 188 189 190 191 192 193 194 195 196
    if rank_id == 0:
        for idx, op in enumerate(ops):
            if op.type == "send_v2" and "gelu_0.tmp_0" in op.input_arg_names:
                send_result = True
            if op.type == "recv_v2" and "gelu_0.tmp_0@GRAD" in op.output_arg_names[
                    0]:
                recv_result = True
    else:
        for idx, op in enumerate(ops):
            if op.type == "send_v2" and "gelu_0.tmp_0@GRAD" in op.input_arg_names:
                send_result = True
197
            if op.type == "recv_v2" and "gelu_0.tmp_0" in op.output_arg_names[0]:
C
caozhou 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                recv_result = True

    return send_result and recv_result


def check_initialization(dist_startup_prog, rank_id):
    if rank_id == 0:
        need_check_params = [
            "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0",
            "linear_0.b_0"
        ]
    else:
        need_check_params = ['linear_1.w_0', 'linear_1.b_0']

    params = []
    for var_name, var in dist_startup_prog.global_block().vars.items():
        if var.is_parameter:
            params.append(var_name)

    return params == need_check_params


def check_initialization_for_dp(dist_startup_prog):
    need_check_params = [
        "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0", "linear_0.b_0"
    ] + ['linear_1.w_0', 'linear_1.b_0']
    params = []
    for var_name, var in dist_startup_prog.global_block().vars.items():
        if var.is_parameter:
            params.append(var_name)
    broadcast_varnames = []
    for op in dist_startup_prog.global_block().ops:
        if op.type == "c_broadcast":
            broadcast_varnames.append(op.output_arg_names[0])

233 234
    return sorted(params) == sorted(need_check_params) == sorted(
        broadcast_varnames)
C
caozhou 已提交
235 236 237


class TestMLPReshard(unittest.TestCase):
238

C
caozhou 已提交
239 240
    def test_complete_backward_annotation(self):
        global _global_process_mesh
241
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
C
caozhou 已提交
242 243 244 245 246

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 0
247
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260
            train_program, startup_program, dist_context, 0)

        op_need_check = None
        for op in dist_main_prog.global_block().ops:
            if op.type == "gelu_grad":
                op_need_check = op
                break

        # grad op should have dist attr
        self.assertTrue(
            check_backward_dist_attr(dist_context, dist_main_prog,
                                     op_need_check))

261 262 263 264
        # clear _g_process_group_map
        _g_process_group_map.clear()
        _g_process_group_map[0] = ProcessGroup(0, [])

C
caozhou 已提交
265 266 267 268
    def test_mlp_pp(self):
        global _global_parallel_strategy
        _global_parallel_strategy = "pp"
        global _global_process_mesh
269
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], dim_names=["x"])
C
caozhou 已提交
270
        global PP_MESH_0
271
        PP_MESH_0 = auto.ProcessMesh(mesh=[0], dim_names=["x"])
C
caozhou 已提交
272
        global PP_MESH_1
273
        PP_MESH_1 = auto.ProcessMesh(mesh=[1], dim_names=["x"])
C
caozhou 已提交
274 275 276 277 278

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 1
279
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
280
            train_program, startup_program, dist_context, rank_id)
281 282 283
        resharder = Resharder(dist_main_prog, dist_startup_prog, rank_id,
                              dist_context, dist_params_grads)
        resharder.reshard()
C
caozhou 已提交
284 285 286 287 288 289

        # check send and recv result
        self.assertTrue(check_send_recv_result(dist_main_prog, rank_id))
        # parameter initialization of every rank should be different in the pipeline scene
        self.assertTrue(check_initialization(dist_startup_prog, rank_id))

290 291 292 293
        # clear _g_process_group_map
        _g_process_group_map.clear()
        _g_process_group_map[0] = ProcessGroup(0, [])

294
    def test_mlp_pp_diff_process_mesh(self):
295 296 297
        global _global_parallel_strategy
        _global_parallel_strategy = "pp"
        global _global_process_mesh
298
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], dim_names=["x"])
299
        global PP_MESH_0
300
        PP_MESH_0 = auto.ProcessMesh(mesh=[0], dim_names=["x"])
301
        global PP_MESH_1
302
        PP_MESH_1 = auto.ProcessMesh(mesh=[1], dim_names=["x"])
303

304 305 306 307
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 1
308
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
309
            train_program, startup_program, dist_context, rank_id, True)
310 311 312
        resharder = Resharder(dist_main_prog, dist_startup_prog, rank_id,
                              dist_context, dist_params_grads)
        resharder.reshard()
313 314 315 316
        # check send and recv result
        self.assertTrue(check_send_recv_result(dist_main_prog, rank_id))
        self.assertTrue(check_initialization(dist_startup_prog, rank_id))

317 318 319 320
        # clear _g_process_group_map
        _g_process_group_map.clear()
        _g_process_group_map[0] = ProcessGroup(0, [])

C
caozhou 已提交
321 322 323 324
    def test_mlp_dp(self):
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
        global _global_process_mesh
325
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], dim_names=["x"])
C
caozhou 已提交
326 327 328 329 330

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 0
331
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
332
            train_program, startup_program, dist_context, rank_id)
333 334 335
        resharder = Resharder(dist_main_prog, dist_startup_prog, rank_id,
                              dist_context, dist_params_grads)
        resharder.reshard()
336

C
caozhou 已提交
337 338 339 340 341
        # send and recv should not exist in dp scene.
        self.assertFalse(check_send_recv_result(dist_main_prog, rank_id))
        # all parameters should be initialized in dp scene
        self.assertTrue(check_initialization_for_dp(dist_startup_prog))

342 343 344 345
        # clear _g_process_group_map
        _g_process_group_map.clear()
        _g_process_group_map[0] = ProcessGroup(0, [])

C
caozhou 已提交
346 347 348

if __name__ == "__main__":
    unittest.main()