elementwise_op_npu_test.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef _WIN32
#include <unistd.h>
#endif

#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/string/printf.h"
29
#include "paddle/phi/kernels/funcs/math_function.h"
30 31 32 33

namespace f = paddle::framework;
namespace p = paddle::platform;

34
USE_OP_ITSELF(elementwise_add);
35 36 37 38 39
USE_OP_DEVICE_KERNEL(elementwise_add, NPU);
USE_OP(elementwise_sub);
USE_OP_DEVICE_KERNEL(elementwise_sub, NPU);

template <typename T>
40
void Compare(f::Scope *scope, const p::DeviceContext &ctx,
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
             std::string op_type) {
  // init
  auto x = scope->Var("X");
  auto tensor_x = x->GetMutable<f::LoDTensor>();

  auto y = scope->Var("Y");
  auto tensor_y = y->GetMutable<f::LoDTensor>();

  std::vector<T> init_x;
  for (int64_t i = 0; i < 10 * 10; ++i) {
    init_x.push_back(static_cast<T>(1.0));
  }

  std::vector<T> init_y;
  for (int64_t i = 0; i < 10 * 10; ++i) {
    init_y.push_back(static_cast<T>(2.0));
  }

59
  paddle::framework::TensorFromVector(init_x, ctx, tensor_x);
60
  tensor_x->Resize({10, 10});
61
  paddle::framework::TensorFromVector(init_y, ctx, tensor_y);
62 63 64 65 66 67 68 69 70 71 72 73 74 75
  tensor_y->Resize({10, 10});

  auto place = ctx.GetPlace();
  auto out = scope->Var("Out");
  auto tensor_out = out->GetMutable<f::LoDTensor>();

  // run
  f::AttributeMap attrs;
  auto op = f::OpRegistry::CreateOp(op_type, {{"X", {"X"}}, {"Y", {"Y"}}},
                                    {{"Out", {"Out"}}}, attrs);

  op->Run(*scope, place);

  std::vector<T> out_vec;
76
  paddle::framework::TensorToVector(*tensor_out, ctx, &out_vec);
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

  ctx.Wait();
  float expected;
  if (op_type == "elementwise_add") {
    expected = 3.0;
  } else if (op_type == "elementwise_sub") {
    expected = -1.0;
  }
  EXPECT_EQ(out_vec.size(), init_x.size());
  for (uint32_t i = 0; i < out_vec.size(); i++) {
    EXPECT_EQ(out_vec[i], static_cast<T>(expected));
  }
}

template <typename T>
92
void CompareGrad(f::Scope *scope, const p::DeviceContext &ctx,
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
                 std::string op_type) {
  // init
  auto dout = scope->Var("DOut");
  auto tensor_dout = dout->GetMutable<f::LoDTensor>();
  tensor_dout->Resize({2, 3, 5});

  auto x = scope->Var("X");
  auto tensor_x = x->GetMutable<f::LoDTensor>();
  tensor_x->Resize({2, 3, 5});

  auto y = scope->Var("Y");
  auto tensor_y = y->GetMutable<f::LoDTensor>();
  tensor_y->Resize({1, 5});

  auto dx = scope->Var("DX");
  auto tensor_dx = dx->GetMutable<f::LoDTensor>();

  auto dy = scope->Var("DY");
  auto tensor_dy = dy->GetMutable<f::LoDTensor>();

  std::vector<T> init_dout;
  for (int64_t i = 0; i < tensor_dout->numel(); ++i) {
    init_dout.push_back(static_cast<T>(1.0));
  }

118
  paddle::framework::TensorFromVector(init_dout, ctx, tensor_dout);
119 120 121 122 123 124 125 126 127 128 129 130
  tensor_dout->Resize({2, 3, 5});

  // run
  f::AttributeMap attrs;
  auto op = f::OpRegistry::CreateOp(
      op_type, {{"Out@GRAD", {"DOut"}}, {"X", {"X"}}, {"Y", {"Y"}}},
      {{"X@GRAD", {"DX"}}, {"Y@GRAD", {"DY"}}}, attrs);

  auto place = ctx.GetPlace();
  op->Run(*scope, place);

  std::vector<T> dx_vec;
131
  paddle::framework::TensorToVector(*tensor_dx, ctx, &dx_vec);
132 133

  std::vector<T> dy_vec;
134
  paddle::framework::TensorToVector(*tensor_dy, ctx, &dy_vec);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

  ctx.Wait();
  float expected_x, expected_y;
  if (op_type == "elementwise_add_grad") {
    expected_x = 1.0;
    expected_y = 6.0;
  } else if (op_type == "elementwise_sub_grad") {
    expected_x = 1.0;
    expected_y = -6.0;
  }

  for (uint32_t i = 0; i < dx_vec.size(); i++) {
    EXPECT_EQ(dx_vec[i], static_cast<T>(expected_x));
  }
  for (uint32_t i = 0; i < dy_vec.size(); i++) {
    EXPECT_EQ(dy_vec[i], static_cast<T>(expected_y));
  }
}

TEST(elementwise_add, NPU_fp32) {
  f::Scope scope;
156 157
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<float>(&scope, *ctx, "elementwise_add");
158 159 160 161
}

TEST(elementwise_sub, NPU_fp32) {
  f::Scope scope;
162 163
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<float>(&scope, *ctx, "elementwise_sub");
164 165 166 167
}

TEST(elementwise_sub, NPU_fp16) {
  f::Scope scope;
168 169
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<p::float16>(&scope, *ctx, "elementwise_sub");
170 171 172 173
}

TEST(elementwise_sub_grad, NPU) {
  f::Scope scope;
174 175
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  CompareGrad<float>(&scope, *ctx, "elementwise_sub_grad");
176
}
177 178 179

TEST(elementwise_add_grad, NPU) {
  f::Scope scope;
180 181
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  CompareGrad<float>(&scope, *ctx, "elementwise_add_grad");
182
}