test_engine.cc 7.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

N
nhzlx 已提交
18
#include "paddle/fluid/framework/tensor.h"
19
#include "paddle/fluid/inference/tensorrt/engine.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class TensorRTEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
N
nhzlx 已提交
29 30
    ctx_ = new platform::CUDADeviceContext(platform::CUDAPlace(0));

31
    engine_ = new TensorRTEngine(10, 1 << 10);
Y
Yan Chunwei 已提交
32 33 34
    engine_->InitNetwork();
  }

N
nhzlx 已提交
35 36 37 38 39 40
  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }
N
nhzlx 已提交
41 42 43 44 45 46 47 48 49

  void PrepareInputOutput(const std::vector<float> &input,
                          std::vector<int> output_shape) {
    TensorFromVector(input, *ctx_, &input_);
    output_.Resize(framework::make_ddim(output_shape));
  }

  void GetOutput(std::vector<float> *output) {
    TensorToVector(output_, *ctx_, output);
Y
Yan Chunwei 已提交
50 51 52
  }

 protected:
N
nhzlx 已提交
53 54 55 56
  framework::Tensor input_;
  framework::Tensor output_;
  TensorRTEngine *engine_;
  platform::CUDADeviceContext *ctx_;
Y
Yan Chunwei 已提交
57 58 59 60 61 62 63 64
};

TEST_F(TensorRTEngineTest, add_layer) {
  const int size = 1;

  float raw_weight[size] = {2.};  // Weight in CPU memory.
  float raw_bias[size] = {3.};

N
nhzlx 已提交
65 66
  std::vector<void *> buffers(2);  // TRT binded inputs

Y
Yan Chunwei 已提交
67 68 69
  LOG(INFO) << "create weights";
  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
N
nhzlx 已提交
70
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
Y
Yan Chunwei 已提交
71
                                  nvinfer1::DimsCHW{1, 1, 1});
N
nhzlx 已提交
72
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, size,
Y
Yan Chunwei 已提交
73
                                        weight.get(), bias.get());
74 75 76
  PADDLE_ENFORCE_NOT_NULL(fc_layer,
                          platform::errors::InvalidArgument(
                              "TRT fully connected layer building failed."));
Y
Yan Chunwei 已提交
77 78 79 80 81 82 83

  engine_->DeclareOutput(fc_layer, 0, "y");
  LOG(INFO) << "freeze network";
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  // fill in real data
N
nhzlx 已提交
84 85 86 87 88 89 90 91 92 93
  std::vector<float> x_v = {1234};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {1});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

Y
Yan Chunwei 已提交
94
  LOG(INFO) << "to execute";
95
  engine_->Execute(1, &buffers, ctx_->stream());
Y
Yan Chunwei 已提交
96 97

  LOG(INFO) << "to get output";
N
nhzlx 已提交
98
  GetOutput(&y_cpu);
Y
Yan Chunwei 已提交
99 100

  LOG(INFO) << "to checkout output";
N
nhzlx 已提交
101
  ASSERT_EQ(y_cpu[0], x_v[0] * 2 + 3);
Y
Yan Chunwei 已提交
102 103
}

X
Xin Pan 已提交
104 105 106 107 108 109
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
  // Weight in CPU memory.
  // It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
  // instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
  float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
  float raw_bias[2] = {1.3, 2.4};
N
nhzlx 已提交
110
  std::vector<void *> buffers(2);  // TRT binded inputs
X
Xin Pan 已提交
111 112 113

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
N
nhzlx 已提交
114
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
X
Xin Pan 已提交
115
                                  nvinfer1::DimsCHW{1, 2, 1});
N
nhzlx 已提交
116
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, 2,
X
Xin Pan 已提交
117
                                        weight.get(), bias.get());
118 119 120
  PADDLE_ENFORCE_NOT_NULL(fc_layer,
                          platform::errors::InvalidArgument(
                              "TRT fully connected layer building failed."));
X
Xin Pan 已提交
121 122 123 124 125

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
126 127 128 129 130 131 132 133 134 135 136
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

137
  engine_->Execute(1, &buffers, ctx_->stream());
X
Xin Pan 已提交
138 139

  LOG(INFO) << "to get output";
N
nhzlx 已提交
140
  GetOutput(&y_cpu);
N
nhzlx 已提交
141

142 143 144 145
  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 3);
  ASSERT_EQ(dims.d[0], 2);
  ASSERT_EQ(dims.d[1], 1);
N
nhzlx 已提交
146

X
Xin Pan 已提交
147 148 149 150
  ASSERT_EQ(y_cpu[0], 4.5);
  ASSERT_EQ(y_cpu[1], 14.5);
}

151
TEST_F(TensorRTEngineTest, test_conv2d) {
152 153 154
  // Weight in CPU memory.
  float raw_weight[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  float raw_bias[1] = {0};
N
nhzlx 已提交
155
  std::vector<void *> buffers(2);  // TRT binded inputs
156 157 158

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 9);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 1);
N
nhzlx 已提交
159
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
160
                                  nvinfer1::Dims3{1, 3, 3});
N
nhzlx 已提交
161
  auto *conv_layer =
162 163
      TRT_ENGINE_ADD_LAYER(engine_, Convolution, *x, 1, nvinfer1::DimsHW{3, 3},
                           weight.get(), bias.get());
164 165 166
  PADDLE_ENFORCE_NOT_NULL(conv_layer,
                          platform::errors::InvalidArgument(
                              "TRT convolution layer building failed."));
167 168 169 170 171 172 173
  conv_layer->setStride(nvinfer1::DimsHW{1, 1});
  conv_layer->setPadding(nvinfer1::DimsHW{1, 1});

  engine_->DeclareOutput(conv_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
174 175 176 177 178 179 180 181 182 183 184 185
  // fill in real data
  std::vector<float> x_v = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                            1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {18});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

186
  engine_->Execute(2, &buffers, ctx_->stream());
187 188

  LOG(INFO) << "to get output";
N
nhzlx 已提交
189 190
  GetOutput(&y_cpu);

191 192 193 194
  ASSERT_EQ(y_cpu[0], 4.0);
  ASSERT_EQ(y_cpu[1], 6.0);
}

195 196
TEST_F(TensorRTEngineTest, test_pool2d) {
  // Weight in CPU memory.
N
nhzlx 已提交
197
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
198 199
                                  nvinfer1::Dims3{1, 2, 2});

N
nhzlx 已提交
200
  std::vector<void *> buffers(2);  // TRT binded inputs
201
  nvinfer1::PoolingType pool_t = nvinfer1::PoolingType::kAVERAGE;
N
nhzlx 已提交
202 203
  auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *x, pool_t,
                                          nvinfer1::DimsHW{2, 2});
204

205 206 207
  PADDLE_ENFORCE_NOT_NULL(
      pool_layer,
      platform::errors::InvalidArgument("TRT pooling layer building failed."));
208 209 210 211 212 213 214
  pool_layer->setStride(nvinfer1::DimsHW{1, 1});
  pool_layer->setPadding(nvinfer1::DimsHW{0, 0});

  engine_->DeclareOutput(pool_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
215 216 217 218 219 220 221 222 223 224 225
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0, 5.0, 0.0, 2.0, 3.0, 5.0, 10.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

226
  engine_->Execute(2, &buffers, ctx_->stream());
227 228

  LOG(INFO) << "to get output";
N
nhzlx 已提交
229
  GetOutput(&y_cpu);
230 231 232 233 234

  ASSERT_EQ(y_cpu[0], 2.0);
  ASSERT_EQ(y_cpu[1], 5.0);
}

Y
Yan Chunwei 已提交
235 236 237
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle