conv_transpose_mkldnn_op.cc 10.4 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "boost/optional.hpp"
J
Jacek Czaja 已提交
16 17 18
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
19
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");
    PADDLE_ENFORCE(
        is_test == true,
        "ConvTransposeMKLDNN works only for inference!. Set is_test = True");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

49 50
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
51
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
52 53
                      "Wrong format set for Input tensor");

54 55 56 57 58
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The filter tensor's laytout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
59
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
60 61 62 63 64 65
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(input->dims().size(), 4,
                      "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE_EQ(filter->dims().size(), 4,
                      "Filter must be with 4 dimensions, i.e. OIHW");
J
Jacek Czaja 已提交
66 67

    if (bias) {
68 69 70 71 72
      PADDLE_ENFORCE_EQ(
          bias->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The bias tensor's laytout should be %d, but got %d.",
              DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
73
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
74 75 76 77
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
J
Jacek Czaja 已提交
78 79
    }

A
Adam 已提交
80 81 82 83 84 85 86 87 88
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

J
Jacek Czaja 已提交
89
    int groups = ctx.Attr<int>("groups");
90 91 92 93 94 95 96 97
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
98
    auto ksize = framework::vectorize(filter_data_dims);
99 100 101

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);
J
Jacek Czaja 已提交
102 103 104 105 106 107 108 109

    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

A
Adam 已提交
110 111 112
    auto src_tz = paddle::framework::vectorize<int64_t>(input->dims());
    auto iohw_weights_tz =
        paddle::framework::vectorize<int64_t>(filter->dims());
113 114
    auto weights_tz = iohw_weights_tz;

J
Jacek Czaja 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    // IOHW -> OIHW
    weights_tz[0] = iohw_weights_tz[1];
    weights_tz[1] = iohw_weights_tz[0];

    // Custom Reorder from IOHW to OIHW
    auto iohw2oihw_reorder =
        [&iohw_weights_tz](const T* filter_data) -> std::shared_ptr<T> {
      int o = iohw_weights_tz[1];
      int c = iohw_weights_tz[0];
      int h = iohw_weights_tz[2];
      int w = iohw_weights_tz[3];
      std::shared_ptr<T> reordered_filter_data(new T[o * c * h * w](),
                                               std::default_delete<T[]>());
      for (int i = 0; i < c; ++i) {
        for (int j = 0; j < o; ++j) {
          int in_offset = j * h * w + i * o * h * w;
          int out_offset = j * c * h * w + i * h * w;
          std::memcpy(&(reordered_filter_data.get())[out_offset],
                      &filter_data[in_offset], h * w * sizeof(T));
        }
      }

      return reordered_filter_data;
    };

    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
A
Adam 已提交
153
    auto dst_tz = paddle::framework::vectorize<int64_t>(output->dims());
J
Jacek Czaja 已提交
154 155

    // Get unique name for storing MKLDNN primitives
H
hong 已提交
156

157
    const std::string key =
H
hong 已提交
158
        platform::CreateKey(src_tz, ctx.OutputName("Output"));
J
Jacek Czaja 已提交
159 160 161 162 163

    std::vector<mkldnn::primitive> pipeline;

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
164 165 166
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(),
        (g == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);
J
Jacek Czaja 已提交
167 168 169 170 171

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
172
    auto chosen_memory_format = MKLDNNMemoryFormat::any;
173 174 175
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
J
Jacek Czaja 已提交
176 177 178 179 180

    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
    auto weights_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
A
Adam 已提交
181
    std::vector<int64_t> bias_tz;
J
Jacek Czaja 已提交
182 183 184
    auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

185
    platform::ConvTransposeMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);
J
Jacek Czaja 已提交
186 187 188 189 190 191 192
    // create a deconv(conv transpose) primitive descriptor and save it for
    // usage in backward
    std::shared_ptr<mkldnn::deconvolution_forward::primitive_desc>
        conv_transpose_pd;
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
    if (bias) {
A
Adam 已提交
193
      bias_tz = paddle::framework::vectorize<int64_t>(bias->dims());
J
Jacek Czaja 已提交
194
      auto bias_md = platform::MKLDNNMemDesc(
195
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
196
      conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
J
Jacek Czaja 已提交
197
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
198
          fuse_activation, fuse_alpha, fuse_beta, false, fwd_prop_kind);
J
Jacek Czaja 已提交
199
    } else {
200 201
      conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
202 203
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta, false,
          fwd_prop_kind);
J
Jacek Czaja 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    }

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p = handler.AcquireSrcMemory(
        user_src_md, platform::to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, platform::to_void_cast<T>(filter_data),
        is_test ? iohw2oihw_reorder : platform::user_function());

    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);

219 220
    auto output_data =
        output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
A
Adam 已提交
221
    auto dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
J
Jacek Czaja 已提交
222 223
        platform::to_void_cast<T>(output_data));

A
Adam 已提交
224 225 226
    auto conv_p = handler.AcquireConvolution();

    mkldnn::stream astream(mkldnn_engine);
J
Jacek Czaja 已提交
227 228
    if (bias) {
      const T* bias_data = bias->data<T>();
229 230
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
J
Jacek Czaja 已提交
231 232 233 234 235
      auto user_bias_memory_p = handler.AcquireBiasMemory(
          user_bias_md, platform::to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
A
Adam 已提交
236 237 238 239 240

      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_BIAS, *bias_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});
J
Jacek Czaja 已提交
241
    } else {
A
Adam 已提交
242 243 244
      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});
J
Jacek Czaja 已提交
245
    }
A
Adam 已提交
246
    astream.wait();
J
Jacek Czaja 已提交
247

248 249
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
J
Jacek Czaja 已提交
250 251 252 253 254 255 256 257 258 259
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConvTransposeMKLDNNOpKernel<float>);