nets.html 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>nets &mdash; PaddlePaddle  documentation</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../../genindex.html"/>
        <link rel="search" title="Search" href="../../../search.html"/>
35
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html"/> 
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
83
        <ul>
84
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
85
<li class="toctree-l1"><a class="reference internal" href="../../../build_and_install/index_en.html">Install and Build</a></li>
86
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../../../dev/index_en.html">Development</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
108
          <ul>
109
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
110
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/quickstart_en.html">Quick Start</a></li>
111 112
</ul>
</li>
113 114 115 116 117
<li class="toctree-l1"><a class="reference internal" href="../../../build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../build_and_install/build_en.html">Build using Docker</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../build_and_install/build_from_source_en.html">Build from Sources</a></li>
118 119 120
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a><ul>
121 122 123 124
<li class="toctree-l2"><a class="reference internal" href="../../../howto/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
125 126
</ul>
</li>
127 128 129 130 131 132 133 134
<li class="toctree-l2"><a class="reference internal" href="../../../howto/cluster/index_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cluster/preparations_en.html">Preparations</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cluster/cmd_argument_en.html">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cluster/multi_cluster/index_en.html">Use different clusters</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/fabric_en.html">Cluster Training Using Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/openmpi_en.html">Cluster Training Using OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/k8s_en.html">PaddlePaddle On Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
135 136
</ul>
</li>
137 138 139 140
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/rnn/rnn_config_en.html">RNN Configuration</a></li>
141 142 143 144 145
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
146 147 148 149 150 151
<li class="toctree-l1"><a class="reference internal" href="../../../dev/index_en.html">Development</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../dev/write_docs_en.html">Contribute Documentation</a></li>
</ul>
</li>
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
172
    <li>nets</li>
173 174 175 176 177 178 179 180 181
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="nets">
182
<h1>nets<a class="headerlink" href="#nets" title="Permalink to this headline"></a></h1>
183 184
<div class="section" id="simple-img-conv-pool">
<h2>simple_img_conv_pool<a class="headerlink" href="#simple-img-conv-pool" title="Permalink to this headline"></a></h2>
185 186 187 188 189
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">simple_img_conv_pool</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>pool_size</em>, <em>pool_stride</em>, <em>act</em>, <em>param_attr=None</em>, <em>pool_type='max'</em>, <em>use_cudnn=True</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

190 191 192
</div>
<div class="section" id="sequence-conv-pool">
<h2>sequence_conv_pool<a class="headerlink" href="#sequence-conv-pool" title="Permalink to this headline"></a></h2>
193 194 195 196 197
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">sequence_conv_pool</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>param_attr=None</em>, <em>act='sigmoid'</em>, <em>pool_type='max'</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

198 199 200
</div>
<div class="section" id="glu">
<h2>glu<a class="headerlink" href="#glu" title="Permalink to this headline"></a></h2>
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">glu</code><span class="sig-paren">(</span><em>input</em>, <em>dim=-1</em><span class="sig-paren">)</span></dt>
<dd><p>The gated linear unit composed by split, sigmoid activation and elementwise
multiplication. Specifically, Split the input into two equal sized parts
<span class="math">\(a\)</span> and <span class="math">\(b\)</span> along the given dimension and then compute as
following:</p>
<blockquote>
<div><div class="math">
\[{GLU}(a, b)= a \otimes \sigma(b)\]</div>
</div></blockquote>
<p>Refer to <a class="reference external" href="https://arxiv.org/pdf/1612.08083.pdf">Language Modeling with Gated Convolutional Networks</a>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>dim</strong> (<em>int</em>) &#8211; The dimension along which to split. If <span class="math">\(dim &lt; 0\)</span>, the
dimension to split along is <span class="math">\(rank(input) + dim\)</span>.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The Tensor variable with half the size of input.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with shape [3, 6, 9]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">nets</span><span class="o">.</span><span class="n">glu</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>  <span class="c1"># shape of output: [3, 3, 9]</span>
</pre></div>
</div>
</dd></dl>

239
</div>
240 241
<div class="section" id="scaled-dot-product-attention">
<h2>scaled_dot_product_attention<a class="headerlink" href="#scaled-dot-product-attention" title="Permalink to this headline"></a></h2>
242 243
<dl class="function">
<dt>
244
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">scaled_dot_product_attention</code><span class="sig-paren">(</span><em>queries</em>, <em>keys</em>, <em>values</em>, <em>num_heads=1</em>, <em>dropout_rate=0.0</em><span class="sig-paren">)</span></dt>
245 246 247 248 249 250 251 252 253
<dd><p>The dot-product attention.</p>
<p>Attention mechanism can be seen as mapping a query and a set of key-value
pairs to an output. The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a compatibility
function (dot-product here) of the query with the corresponding key.</p>
<p>The dot-product attention can be implemented through (batch) matrix
multipication as follows:</p>
<blockquote>
<div><div class="math">
254
\[Attention(Q, K, V)= softmax(QK^\mathrm{T})V\]</div>
255 256 257 258 259 260 261
</div></blockquote>
<p>Refer to <a class="reference external" href="https://arxiv.org/pdf/1706.03762.pdf">Attention Is All You Need</a>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
262 263 264 265 266 267 268
<li><strong>queries</strong> (<em>Variable</em>) &#8211; The input variable which should be a 3-D Tensor.</li>
<li><strong>keys</strong> (<em>Variable</em>) &#8211; The input variable which should be a 3-D Tensor.</li>
<li><strong>values</strong> (<em>Variable</em>) &#8211; The input variable which should be a 3-D Tensor.</li>
<li><strong>num_heads</strong> (<em>int</em>) &#8211; Head number to compute the scaled dot product
attention. Default value is 1.</li>
<li><strong>dropout_rate</strong> (<em>float</em>) &#8211; The dropout rate to drop the attention weight.
Default value is 0.</li>
269 270 271
</ul>
</td>
</tr>
272
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A 3-D Tensor computed by multi-head scaled dot product                   attention.</p>
273 274
</td>
</tr>
275 276 277 278
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first">Variable</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><code class="xref py py-exc docutils literal"><span class="pre">ValueError</span></code> &#8211; If input queries, keys, values are not 3-D Tensors.</p>
279 280 281 282
</td>
</tr>
</tbody>
</table>
283 284 285 286 287 288 289 290 291
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>1. When num_heads &gt; 1, three linear projections are learned respectively
to map input queries, keys and values into queries&#8217;, keys&#8217; and values&#8217;.
queries&#8217;, keys&#8217; and values&#8217; have the same shapes with queries, keys
and values.</p>
<p class="last">1. When num_heads == 1, scaled_dot_product_attention has no learnable
parameters.</p>
</div>
292
<p class="rubric">Examples</p>
293
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Suppose q, k, v are Tensors with the following shape:</span>
294
<span class="c1"># q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]</span>
295 296 297

<span class="n">contexts</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">nets</span><span class="o">.</span><span class="n">scaled_dot_product_attention</span><span class="p">(</span><span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
<span class="n">contexts</span><span class="o">.</span><span class="n">shape</span>  <span class="c1"># [3, 5, 10]</span>
298 299 300 301
</pre></div>
</div>
</dd></dl>

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>