test_dynrnn_gradient_check.py 12.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yang Yu 已提交
17 18 19
import numpy
import random
import collections
20
import paddle.fluid as fluid
Y
Yang Yu 已提交
21
import unittest
22
from decorator_helper import *
Y
Yang Yu 已提交
23 24 25 26 27 28 29 30 31 32 33 34


class Memory(object):
    def __init__(self, shape, dtype='float32'):
        self.ex = numpy.zeros(shape=shape, dtype=dtype)
        self.cur = None

    def update(self, val):
        assert val.shape == self.ex.shape
        assert val.dtype == self.ex.dtype
        self.cur = val

35
    def next(self):
Y
Yang Yu 已提交
36 37 38 39
        self.ex = self.cur
        self.cur = None

    def __next__(self):
40
        self.next()
Y
Yang Yu 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    def reset(self):
        self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype)
        self.cur = None


class Output(object):
    def __init__(self):
        self.outs = []

    def next_sequence(self):
        self.outs.append([])

    def out(self, val):
        self.outs[-1].append(val)

    def last(self):
        return self.outs[-1][-1]


class BaseRNN(object):
    def __init__(self, ins, mems, params, outs, num_seq=5, max_seq_len=15):
        self.num_seq = num_seq
        self.inputs = collections.defaultdict(list)

66
        for _ in range(num_seq):
Y
Yang Yu 已提交
67 68 69 70 71
            seq_len = random.randint(1, max_seq_len - 1)
            for iname in ins:
                ishape = ins[iname].get('shape', None)
                idtype = ins[iname].get('dtype', 'float32')
                lst = []
72
                for _ in range(seq_len):
Y
Yang Yu 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
                    lst.append(numpy.random.random(size=ishape).astype(idtype))
                self.inputs[iname].append(lst)

        self.mems = dict()
        for mname in mems:
            mshape = mems[mname].get('shape', None)
            mdtype = mems[mname].get('dtype', 'float32')
            self.mems[mname] = Memory(shape=mshape, dtype=mdtype)

        self.params = dict()
        for pname in params:
            pshape = params[pname].get('shape', None)
            pdtype = params[pname].get('dtype', 'float32')
            self.params[pname] = numpy.random.random(size=pshape).astype(pdtype)

        self.outputs = dict()

        for oname in outs:
            self.outputs[oname] = Output()

    def step(self, **kwargs):
Y
Yang Yu 已提交
94
        raise NotImplementedError()
Y
Yang Yu 已提交
95 96 97 98 99 100

    def exe(self):
        retv = dict()
        for out in self.outputs:
            retv[out] = []

101
        for seq_id in range(self.num_seq):
Y
Yang Yu 已提交
102 103 104 105 106
            for mname in self.mems:
                self.mems[mname].reset()
            for out in self.outputs:
                self.outputs[out].next_sequence()

107
            iname0 = list(self.inputs.keys())[0]
Y
Yang Yu 已提交
108 109
            seq_len = len(self.inputs[iname0][seq_id])

110
            for step_id in range(seq_len):
Y
Yang Yu 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                xargs = dict()

                for iname in self.inputs:
                    xargs[iname] = self.inputs[iname][seq_id][step_id]

                for mname in self.mems:
                    xargs[mname] = self.mems[mname]

                for pname in self.params:
                    xargs[pname] = self.params[pname]

                for out in self.outputs:
                    xargs[out] = self.outputs[out]

                self.step(**xargs)

                for mname in self.mems:
                    next(self.mems[mname])

            for out in self.outputs:
                retv[out].append(self.outputs[out].last())

        for out in retv:
            retv[out] = numpy.array(retv[out])
        return retv

    def to_feed(self, place):
        feed_dict = dict()

        for iname in self.inputs:
141
            lod = []
Y
Yang Yu 已提交
142
            np_flatten = []
143
            for seq_id in range(len(self.inputs[iname])):
Y
Yang Yu 已提交
144
                seq_len = len(self.inputs[iname][seq_id])
145
                lod.append(seq_len)
Y
Yang Yu 已提交
146 147 148 149
                np_flatten.extend(self.inputs[iname][seq_id])

            t = fluid.Tensor()
            t.set(numpy.array(np_flatten), place)
150
            t.set_recursive_sequence_lengths([lod])
Y
Yang Yu 已提交
151 152 153 154 155 156
            feed_dict[iname] = t

        for pname in self.params:
            feed_dict[pname] = self.params[pname]
        return feed_dict

Y
Yang Yu 已提交
157
    def get_numeric_gradient_of_param(self, param_name, delta=0.001):
Y
Yang Yu 已提交
158
        p = self.params[param_name]
Y
Yang Yu 已提交
159 160 161
        if len(p.shape) != 2:
            raise ValueError("Not support get numeric gradient of an parameter,"
                             " which is not matrix")
Y
Yang Yu 已提交
162 163
        g = numpy.zeros(shape=p.shape, dtype=p.dtype)

164 165
        for i in range(p.shape[0]):
            for j in range(p.shape[1]):
Y
Yang Yu 已提交
166 167 168 169 170 171 172
                o = p[i][j]
                p[i][j] += delta
                pos = self._exe_mean_out_()
                p[i][j] -= 2 * delta
                neg = self._exe_mean_out_()
                p[i][j] = o
                g[i][j] = (pos - neg) / (delta * 2)
Y
Yang Yu 已提交
173 174
        return g

Y
Stash  
Yang Yu 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def get_numeric_gradient_of_input(self,
                                      input_name,
                                      delta=0.001,
                                      return_one_tensor=True):
        ipt = self.inputs[input_name]
        grad = []

        for seq in ipt:
            seq_grad = []
            for item in seq:
                item_grad = numpy.zeros(shape=item.shape, dtype=item.dtype)
                if len(item.shape) != 1:
                    raise ValueError("Not support")

189
                for i in range(len(item)):
Y
Stash  
Yang Yu 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202
                    o = item[i]
                    item[i] += delta
                    pos = self._exe_mean_out_()
                    item[i] -= 2 * delta
                    neg = self._exe_mean_out_()
                    item[i] = o
                    item_grad[i] = (pos - neg) / (delta * 2)
                seq_grad.append(item_grad)
            grad.append(seq_grad)

        if not return_one_tensor:
            return grad

203
        for i in range(len(grad)):
Y
Stash  
Yang Yu 已提交
204 205 206 207
            grad[i] = numpy.concatenate(grad[i])
        grad = numpy.concatenate(grad)
        return grad

Y
Yang Yu 已提交
208 209
    def _exe_mean_out_(self):
        outs = self.exe()
210
        return numpy.array([o.mean() for o in outs.values()]).mean()
Y
Yang Yu 已提交
211 212


213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class SeedFixedTestCase(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        """Fix random seeds to remove randomness from tests"""
        cls._np_rand_state = numpy.random.get_state()
        cls._py_rand_state = random.getstate()

        numpy.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""
        numpy.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)


class TestSimpleMul(SeedFixedTestCase):
Y
Yang Yu 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    DATA_NAME = 'X'
    DATA_WIDTH = 32
    PARAM_NAME = 'W'
    HIDDEN_WIDTH = 10
    OUT_NAME = 'Out'

    class SimpleMul(BaseRNN):
        def __init__(self):
            base = TestSimpleMul
            super(base.SimpleMul, self).__init__({
                base.DATA_NAME: {
                    'shape': [base.DATA_WIDTH]
                }
            }, {}, {
                base.PARAM_NAME: {
                    'shape': [base.DATA_WIDTH, base.HIDDEN_WIDTH]
                }
            }, [base.OUT_NAME])

        def step(self, X, W, Out):
            Out.out(numpy.matmul(X, W))

Y
Yang Yu 已提交
253 254 255 256
    # Test many times in local to ensure the random seed cannot breaks CI
    # @many_times(10)
    @prog_scope()
    def test_forward_backward(self):
Y
Stash  
Yang Yu 已提交
257
        py_rnn = TestSimpleMul.SimpleMul()
Y
Yang Yu 已提交
258 259
        dat = fluid.layers.data(
            name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1)
Y
Stash  
Yang Yu 已提交
260
        dat.stop_gradient = False
Y
Yang Yu 已提交
261 262 263 264 265

        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            d = rnn.step_input(dat)
            o = fluid.layers.fc(input=d,
Y
Yang Yu 已提交
266
                                param_attr=self.PARAM_NAME,
Y
Yang Yu 已提交
267
                                bias_attr=False,
Y
Yang Yu 已提交
268
                                size=self.HIDDEN_WIDTH,
Y
Yang Yu 已提交
269 270 271 272 273
                                act=None)
            rnn.output(o)

        out = rnn()
        out = fluid.layers.sequence_pool(out, pool_type='last')
Y
Yu Yang 已提交
274
        loss = fluid.layers.mean(out)
Y
Update  
Yang Yu 已提交
275
        fluid.backward.append_backward(loss)
Y
Yang Yu 已提交
276 277 278

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
279 280 281 282 283 284 285 286
        out, w_g, i_g = list(
            map(numpy.array,
                exe.run(feed=py_rnn.to_feed(cpu),
                        fetch_list=[
                            out, self.PARAM_NAME + "@GRAD", self.DATA_NAME +
                            "@GRAD"
                        ],
                        return_numpy=False)))
Y
Stash  
Yang Yu 已提交
287
        out_by_python = py_rnn.exe()[self.OUT_NAME]
Y
Yang Yu 已提交
288
        self.assertTrue(numpy.allclose(out, out_by_python))
Y
Stash  
Yang Yu 已提交
289
        w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
Y
Yang Yu 已提交
290
        self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.05))
Y
Stash  
Yang Yu 已提交
291 292 293 294
        i_g_num = py_rnn.get_numeric_gradient_of_input(
            input_name=self.DATA_NAME)
        i_g_num = i_g_num.reshape(i_g.shape)
        self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.05))
Y
Yang Yu 已提交
295 296


297
class TestSimpleMulWithMemory(SeedFixedTestCase):
Y
Yang Yu 已提交
298
    DATA_WIDTH = 32
Y
Stash  
Yang Yu 已提交
299
    HIDDEN_WIDTH = 20
Y
Yang Yu 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    DATA_NAME = 'X'
    PARAM_NAME = 'W'

    class SimpleMulWithMemory(BaseRNN):
        def __init__(self):
            super(TestSimpleMulWithMemory.SimpleMulWithMemory, self).__init__({
                TestSimpleMulWithMemory.DATA_NAME: {
                    'shape': [TestSimpleMulWithMemory.DATA_WIDTH]
                }
            }, {'Mem': {
                'shape': [TestSimpleMulWithMemory.HIDDEN_WIDTH]
            }}, {
                TestSimpleMulWithMemory.PARAM_NAME: {
                    'shape': [
                        TestSimpleMulWithMemory.DATA_WIDTH,
                        TestSimpleMulWithMemory.HIDDEN_WIDTH
                    ]
                }
            }, ['Out'])

        def step(self, X, Mem, W, Out):
            o = numpy.matmul(X, W)
            assert isinstance(Mem, Memory)
            o += Mem.ex
            Mem.update(o)
            assert isinstance(Out, Output)
            Out.out(o)

Y
Yang Yu 已提交
328 329
    # many_times used locally for debug. Make sure the calculation is stable.
    # @many_times(10)
Y
Yang Yu 已提交
330 331 332 333 334
    @prog_scope()
    def test_forward_backward(self):
        py_rnn = TestSimpleMulWithMemory.SimpleMulWithMemory()
        data = fluid.layers.data(
            name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1)
Y
Stash  
Yang Yu 已提交
335
        data.stop_gradient = False
Y
Yang Yu 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            d = rnn.step_input(data)
            mem = rnn.memory(value=0.0, shape=[self.HIDDEN_WIDTH])
            hidden = fluid.layers.fc(input=d,
                                     size=self.HIDDEN_WIDTH,
                                     param_attr=self.PARAM_NAME,
                                     bias_attr=False,
                                     act=None)
            o = fluid.layers.elementwise_add(x=hidden, y=mem)
            rnn.update_memory(mem, o)
            rnn.output(o)

        out = rnn()
        last = fluid.layers.sequence_pool(input=out, pool_type='last')
Y
Yu Yang 已提交
351
        loss = fluid.layers.mean(last)
Y
Update  
Yang Yu 已提交
352
        fluid.backward.append_backward(loss)
Y
Yang Yu 已提交
353 354 355

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
Y
Stash  
Yang Yu 已提交
356
        feed = py_rnn.to_feed(cpu)
357 358 359 360 361 362 363 364 365
        last_np, w_g, i_g = list(
            map(numpy.array,
                exe.run(feed=feed,
                        fetch_list=[
                            last, self.PARAM_NAME + "@GRAD", self.DATA_NAME +
                            "@GRAD"
                        ],
                        return_numpy=False)))
        last_by_py, = list(py_rnn.exe().values())
Y
Stash  
Yang Yu 已提交
366
        w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
Y
Yang Yu 已提交
367
        self.assertTrue(numpy.allclose(last_np, last_by_py))
Y
Yang Yu 已提交
368

Y
Stash  
Yang Yu 已提交
369 370 371 372 373 374 375
        self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.1))
        i_g_num = py_rnn.get_numeric_gradient_of_input(self.DATA_NAME)
        i_g_num = i_g_num.reshape(i_g.shape)

        # Since this RNN has many float add. The number could be not stable.
        # rtol = 0.1
        self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.1))
Y
Yang Yu 已提交
376 377


Y
Yang Yu 已提交
378 379
if __name__ == '__main__':
    unittest.main()