allocator_facade.cc 40.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/place.h"
27

28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
29
#include <shared_mutex>
30
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
31
#include "paddle/fluid/memory/allocation/cuda_managed_allocator.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
33
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
34
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
35
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
36
#include "paddle/fluid/platform/device_context.h"
37 38

#ifdef PADDLE_WITH_CUDA
39
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
40
#endif
41

42 43 44 45 46
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
47
#endif
48

49
#ifdef PADDLE_WITH_XPU
50
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
51
#endif
52 53 54 55

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
56

J
jianghaicheng 已提交
57 58 59 60
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
61 62 63 64
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

65 66 67 68 69
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/fluid/memory/allocation/custom_allocator.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#endif

Z
Zeng Jinle 已提交
70
PADDLE_DEFINE_EXPORTED_int64(
71
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
72 73 74
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
75 76 77 78
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
79

80 81 82
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

83 84 85
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
86
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, false,
87 88
                            "Enable StreamSafeCUDAAllocator");

89 90 91 92 93
PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory, false,
                            "Whether to use CUDAManagedAllocator to allocate "
                            "managed memory, only available for auto_growth "
                            "strategy");

94 95
DECLARE_string(allocator_strategy);

96 97 98 99
namespace paddle {
namespace memory {
namespace allocation {

100 101 102 103 104 105 106 107
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
108
                      DecoratedAllocationPtr underlying_allocation)
F
From00 已提交
109 110 111
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
112 113 114 115 116
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
117
    DecoratedAllocationPtr underlying_allocation_;
118 119 120 121 122 123 124 125 126 127 128 129
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
130
  phi::Allocation* AllocateImpl(size_t size) {
131
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
132 133 134
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
135 136
  }

137
  void FreeImpl(phi::Allocation* allocation) {
138 139 140 141 142 143 144 145 146
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

Y
Yu Yang 已提交
147 148
class AllocatorFacadePrivate {
 public:
149 150
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

151 152 153 154 155 156
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

157 158 159
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
    switch (strategy_) {
160 161
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
162 163 164 165 166
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
167
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
168 169 170 171 172 173
        PADDLE_ENFORCE_EQ(
            FLAGS_use_stream_safe_cuda_allocator, false,
            paddle::platform::errors::Unimplemented(
                "StreamSafeCUDAAllocator is only implemented for auto_growth "
                "strategy, not support naive_best_fit strategy"));

174
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
175 176 177
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
178
#endif
179 180 181 182 183
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
184 185 186 187
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
188
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
189 190 191 192 193
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
194 195
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
196
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
197 198
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
199
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
200 201 202 203 204
               ++dev_id) {
            InitNaiveBestFitCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id));
          }
        }
205
#endif
Z
Zeng Jinle 已提交
206 207
        break;
      }
208 209 210

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
211 212
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
213
        if (!FLAGS_use_stream_safe_cuda_allocator) {
214
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
215 216 217 218 219 220 221
               ++dev_id) {
            InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                        allow_free_idle_chunk_);
          }
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
222 223 224 225 226 227
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
        InitNaiveBestFitNPUPinnedAllocator();
#endif
228 229 230 231
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
232 233 234 235 236
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
237 238 239 240 241
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
242 243
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
244
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
245 246
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
247
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
248 249 250 251 252
               ++dev_id) {
            InitAutoGrowthCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id), allow_free_idle_chunk);
          }
        }
253
#endif
Z
Zeng Jinle 已提交
254 255
        break;
      }
256

257 258
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
259 260 261 262 263
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
264 265 266 267 268
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
269
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
270 271 272 273 274
        PADDLE_ENFORCE_EQ(
            FLAGS_use_stream_safe_cuda_allocator, false,
            paddle::platform::errors::Unimplemented(
                "StreamSafeCUDAAllocator is only implemented for auto_growth "
                "strategy, not support thread_local strategy"));
275

276
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
277 278 279
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
280 281 282 283 284
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
285 286 287 288
#endif
        break;
      }

Z
Zeng Jinle 已提交
289
      default: {
290
        PADDLE_THROW(platform::errors::InvalidArgument(
291
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
292
      }
Y
Yu Yang 已提交
293
    }
Z
Zeng Jinle 已提交
294
    InitZeroSizeAllocators();
295
    InitSystemAllocators();
296 297 298 299 300 301

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

    CheckAllocThreadSafe();
302 303 304 305 306 307

#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing())) {
      WrapCUDAGraphAllocator();
    }
#endif
Z
Zeng Jinle 已提交
308 309 310 311
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
312
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
313
            << " " << place << " " << size;
314 315
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
316
                                                          : GetAllocatorMap())
317
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
318
    auto iter = allocators.find(place);
319 320 321
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
322
    return iter->second;
323 324
  }

325
  void* GetBasePtr(const std::shared_ptr<phi::Allocation>& allocation) {
326 327 328
    return static_cast<Allocation*>(allocation.get())->base_ptr();
  }

329
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
330 331 332 333 334 335 336 337 338 339 340
  bool HasCUDAAllocator(const platform::CUDAPlace& place,
                        const gpuStream_t& stream) {
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

341 342 343
  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::CUDAPlace& place, const gpuStream_t& stream,
      bool create_if_not_found = false) {
344 345 346 347
    {  // shared_lock_guard
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
348 349
        return cuda_allocators_[place][stream];
      } else {
350 351 352 353 354
        PADDLE_ENFORCE_NE(create_if_not_found, false,
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
                              stream, place));
355 356 357
      }
    }

358 359 360 361 362
    {  // unique_lock_guard
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
363
    }
364 365 366 367 368
  }

  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    return static_cast<platform::CUDADeviceContext*>(pool.Get(place))->stream();
369
  }
370

371
  void RecordStream(std::shared_ptr<phi::Allocation> allocation,
372
                    const gpuStream_t& stream) {
373 374 375 376
    if (allocation->size() == 0) {
      return;
    }

377 378 379 380 381 382 383 384 385 386 387
    StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    stream_safe_cuda_allocation->RecordStream(stream);
  }

  const gpuStream_t& GetStream(
388
      const std::shared_ptr<phi::Allocation>& allocation) const {
389 390 391 392 393 394 395 396
    const StreamSafeCUDAAllocation* stream_safe_cuda_allocation =
        dynamic_cast<const StreamSafeCUDAAllocation*>(allocation.get());
    PADDLE_ENFORCE_NOT_NULL(stream_safe_cuda_allocation,
                            platform::errors::InvalidArgument(
                                "Failed to dynamic cast %p from Allocation* to "
                                "StreamSafeCUDAAllocation*",
                                allocation.get()));
    return stream_safe_cuda_allocation->GetOwningStream();
397 398 399 400 401 402 403 404 405 406
  }
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
407
    phi::Allocation* AllocateImpl(size_t size) override {
408 409
      return new Allocation(nullptr, 0, place_);
    }
410
    void FreeImpl(phi::Allocation* allocation) override { delete allocation; }
411 412 413 414 415

   private:
    platform::Place place_;
  };

416
  const AllocatorMap& GetAllocatorMap() { return allocators_; }
417

418 419 420
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
421 422
  }

423
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
424 425 426
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
427 428
  }

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  // Create a new CUDAAllocator or CUDAManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateCUDAAllocator(platform::CUDAPlace p) {
    if (FLAGS_use_cuda_managed_memory) {
      PADDLE_ENFORCE_EQ(
          strategy_, AllocatorStrategy::kAutoGrowth,
          platform::errors::InvalidArgument(
              "CUDA managed memory is only implemented for auto_growth "
              "strategy, not support %s strategy.\n"
              "Please use auto_growth strategy by command `export "
              "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed "
              "memory by command `export FLAGS_use_cuda_managed_memory=false`",
              FLAGS_allocator_strategy));

      if (!platform::IsGPUManagedMemorySupported(p.device)) {
        PADDLE_THROW(platform::errors::Unavailable(
            "Failed to create CUDAManagedAllocator on GPU %d.\n\n"
            "You have enabled CUDA managed memory, but the gpu device does not "
            "support allocating managed memory.\n"
            "If you don't actually need to use managed memory, please disable "
            "it with command `export FLAGS_use_cuda_managed_memory=false`.\n"
453 454
            "Or you must use the gpu device that supports managed memory.",
            p.device));
455 456 457 458 459 460
      }
      return std::make_shared<CUDAManagedAllocator>(p);
    }
    return std::make_shared<CUDAAllocator>(p);
  }

461 462 463 464 465 466 467
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
468 469 470
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
471 472 473 474 475 476 477 478
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
    }
  }

  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
479
    auto cuda_allocator = CreateCUDAAllocator(p);
480
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
481
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
482 483 484 485 486 487 488
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
489
      PADDLE_ENFORCE_GPU_SUCCESS(
490 491
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

492
      PADDLE_ENFORCE_GPU_SUCCESS(
493 494 495 496 497 498 499 500 501 502 503 504 505
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
506
      auto cuda_allocator = CreateCUDAAllocator(p);
507 508 509 510 511 512
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
513
    auto cuda_allocator = CreateCUDAAllocator(p);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
550 551
  }

552
  // NOTE(Ruibiao): Old single-stream version, will be removed later
553 554
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
555
#if defined(PADDLE_WITH_HIP)
556
    auto cuda_allocator = CreateCUDAAllocator(p);
557 558 559 560 561 562 563 564 565
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
566
      PADDLE_ENFORCE_GPU_SUCCESS(
567 568
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

569
      PADDLE_ENFORCE_GPU_SUCCESS(
570 571 572 573 574 575 576 577 578 579 580 581 582
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
583
      auto cuda_allocator = CreateCUDAAllocator(p);
584 585 586 587 588
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
589
    auto cuda_allocator = CreateCUDAAllocator(p);
L
Leo Chen 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
621
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
622
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
623 624
#endif
#endif
S
sneaxiy 已提交
625
  }
626 627 628 629 630 631

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
632 633 634 635
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StreamSafeCUDAAllocator>(
        allocator, p, stream,
        /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
636 637 638 639 640 641 642 643
  }

  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
644
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
645 646 647
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

648 649 650 651 652 653 654 655 656
#ifdef PADDLE_WITH_CUDA
  void WrapCUDAGraphAllocator() {
    for (auto& item : allocators_) {
      auto& allocator = item.second;
      allocator = CUDAGraphAllocator::Create(allocator);
    }
  }
#endif

657 658 659 660 661 662 663 664 665
  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
666
#endif
S
sneaxiy 已提交
667

668 669 670 671 672 673
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
674 675 676 677 678 679
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
680 681 682 683 684 685
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

686 687 688 689
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
690 691 692 693 694

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
695 696
#endif

697 698 699 700 701 702 703 704 705 706
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  void InitNaiveBestFitCustomDeviceAllocator(platform::CustomPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  void InitAutoGrowthCustomDeviceAllocator(platform::CustomPlace p,
                                           bool allow_free_idle_chunk) {
    auto custom_allocator =
        std::make_shared<paddle::memory::allocation::CustomAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
707
        custom_allocator, phi::DeviceManager::GetMinChunkSize(p),
708 709 710 711
        allow_free_idle_chunk);
  }
#endif

712 713 714 715 716 717 718 719
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
720
    }
721
#endif
J
jianghaicheng 已提交
722 723 724 725 726 727 728
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
729 730 731
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
732
    int device_count = platform::GetGPUDeviceCount();
733 734
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
735
      system_allocators_[p] = CreateCUDAAllocator(p);
736
    }
F
fwenguang 已提交
737 738 739 740
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
741
      platform::MLUPlace p(i);
F
fwenguang 已提交
742 743
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
744 745
#endif
  }
Z
Zeng Jinle 已提交
746 747

  void InitZeroSizeAllocators() {
748
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
749 750
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
751
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
752
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
753 754 755 756 757
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
758 759 760 761 762 763
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
764 765 766 767 768 769
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
770 771 772 773 774 775
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
776 777 778 779 780 781
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
782
#ifdef PADDLE_WITH_CUSTOM_DEVICE
783
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
784 785
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
786
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type); dev_id++) {
787 788 789 790
        places.emplace_back(platform::CustomPlace(dev_type, dev_id));
      }
    }
#endif
Z
Zeng Jinle 已提交
791 792 793

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
794 795
    }
  }
Z
Zeng Jinle 已提交
796

797 798 799 800 801
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
802
    }
803
  }
804

805 806 807 808
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
809 810 811 812 813
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (FLAGS_use_stream_safe_cuda_allocator) {
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
814 815
  }

816
  // NOTE(Ruibiao): Old single-stream version, will be removed later
817
  void WrapCUDARetryAllocator(size_t retry_time) {
818 819 820 821
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
822 823 824 825 826 827 828
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

829 830 831
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
  CUDAAllocatorMap cuda_allocators_;
832
  std::shared_timed_mutex cuda_allocator_mutex_;
833 834
#endif
  AllocatorStrategy strategy_;
835
  AllocatorMap allocators_;
836 837
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
838
  bool allow_free_idle_chunk_;
839
};
840 841 842 843
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
844
// Pimpl. Make interface clean.
845
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
846 847 848
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
849 850

AllocatorFacade& AllocatorFacade::Instance() {
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
  static AllocatorFacade* instance = new AllocatorFacade;
  return *instance;
}

AllocatorFacadePrivate* AllocatorFacade::GetPrivate() const {
#ifdef PADDLE_WITH_CUDA
  if (UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing())) {
    auto id = platform::CUDAGraph::CapturingID();
    auto iter = cuda_graph_map_.find(id);
    PADDLE_ENFORCE_NE(
        iter, cuda_graph_map_.end(),
        platform::errors::PermissionDenied(
            "No memory pool is prepared for CUDA Graph capturing."));
    VLOG(10) << "Choose CUDA Graph memory pool";
    return iter->second.get();
  }
#endif
  return m_;
869 870
}

871 872 873 874 875
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
876
    AllocatorFacadePrivate* m = GetPrivate();
877
    platform::CUDAPlace cuda_place(place.GetDeviceId());
878
    return m->GetAllocator(cuda_place, m->GetDefaultStream(cuda_place));
879 880
  }
#endif
881

882 883
  return GetPrivate()->GetAllocator(
      place, /* A non-zero num to choose allocator_ */ 1);
884 885
}

886
void* AllocatorFacade::GetBasePtr(
887
    const std::shared_ptr<phi::Allocation>& allocation) {
888 889 890 891 892 893 894 895 896 897
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for auto_growth "
                        "strategy, not support allocator strategy: %d",
                        static_cast<int>(GetAllocatorStrategy())));
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()), true,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for CUDAPlace(), not "
                        "suppot place: %s",
                        allocation->place()));
898
  return GetPrivate()->GetBasePtr(allocation);
899 900
}

901 902 903 904 905
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place, const gpuStream_t& stream) {
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
906 907
    return GetPrivate()->GetAllocator(place, stream,
                                      /*create_if_not_found=*/true);
908
  }
909 910
  return GetPrivate()->GetAllocator(
      place, /* A non-zero num to choose allocator_ */ 1);
911 912 913 914 915
}
#endif

const std::shared_ptr<Allocator>& AllocatorFacade::GetZeroAllocator(
    const platform::Place& place) {
916
  return GetPrivate()->GetAllocator(place, /* zero size */ 0);
917 918
}

919
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
920
    const platform::Place& place, size_t size) {
921
  return std::shared_ptr<phi::Allocation>(Alloc(place, size));
922 923
}

924 925
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
926 927 928
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      size > 0 && FLAGS_use_system_allocator == false) {
929
    platform::CUDAPlace cuda_place(place.GetDeviceId());
930 931 932
    phi::Stream default_stream = phi::Stream(reinterpret_cast<phi::StreamId>(
        GetPrivate()->GetDefaultStream(cuda_place)));
    return Alloc(cuda_place, size, default_stream);
933 934
  }
#endif
935
  return GetPrivate()->GetAllocator(place, size)->Allocate(size);
936 937
}

W
Wilber 已提交
938
uint64_t AllocatorFacade::Release(const platform::Place& place) {
939 940 941
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
942
    platform::CUDAPlace cuda_place(place.GetDeviceId());
943
    return Release(cuda_place, GetPrivate()->GetDefaultStream(cuda_place));
944 945
  }
#endif
946 947
  return GetPrivate()
      ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
948 949 950
      ->Release(place);
}

951 952
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, const phi::Stream& stream) {
953 954 955 956
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
957 958 959
          "multi-stream 'AllocaShared' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
960
  return std::shared_ptr<phi::Allocation>(Alloc(place, size, stream));
961 962
}

963 964
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     const phi::Stream& stream) {
965 966 967 968 969
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
970
          "multi-stream 'Alloc' function. To enable it, you can enter"
971 972 973
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));

974 975 976 977 978 979 980 981
  platform::CUDAPlace p(place.GetDeviceId());
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
    gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
    return GetPrivate()
        ->GetAllocator(p, s, /* create_if_not_found = */ true)
        ->Allocate(size);
  } else {
    return GetPrivate()->GetAllocator(p, size)->Allocate(size);
982 983 984 985 986 987
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
}

988 989 990
bool AllocatorFacade::InSameStream(
    const std::shared_ptr<phi::Allocation>& allocation,
    const phi::Stream& stream) {
991
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
992 993 994 995
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
996
          "multi-stream 'InSameStream' function. To enable it, you can enter"
997 998
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
999 1000 1001 1002
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
1003
#endif
1004 1005
}

1006
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1007 1008 1009 1010 1011 1012
uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
                                  const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
1013 1014 1015
          "multi-stream 'Release' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
1016
  return GetPrivate()->GetAllocator(place, stream)->Release(place);
1017 1018
}

1019
void AllocatorFacade::RecordStream(std::shared_ptr<phi::Allocation> allocation,
1020 1021 1022 1023 1024
                                   const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
1025 1026 1027
          "'RecordStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
1028
  GetPrivate()->RecordStream(allocation, stream);
1029 1030
}

1031
const gpuStream_t& AllocatorFacade::GetStream(
1032
    const std::shared_ptr<phi::Allocation>& allocation) const {
1033 1034 1035 1036 1037 1038 1039
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "'GetStream' function. To enable it, you can enter"
          "'export FLAGS_use_stream_safe_cuda_allocator=true' in the "
          "terminal."));
1040
  return GetPrivate()->GetStream(allocation);
1041 1042
}

1043 1044
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported when the "
                        "FLAGS_allocator_strategy=\"auto_growth\", but got "
                        "FLAGS_allocator_strategy=\"%s\"",
                        FLAGS_allocator_strategy));
  auto& allocator = cuda_graph_map_[id];
  PADDLE_ENFORCE_EQ(
      allocator.get(), nullptr,
      platform::errors::InvalidArgument(
          "The memory pool of the CUDA Graph with ID %d have been prepared.",
          id));
  allocator.reset(new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
  VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
1059 1060 1061
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
1062 1063 1064 1065 1066 1067
  auto iter = cuda_graph_map_.find(id);
  PADDLE_ENFORCE_NE(iter, cuda_graph_map_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find CUDA Graph with ID = %d", id));
  cuda_graph_map_.erase(iter);
  VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
1068 1069
}
#endif
1070
#endif
1071 1072 1073
}  // namespace allocation
}  // namespace memory
}  // namespace paddle