ps_gpu_wrapper.cc 21.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

T
Thunderbrook 已提交
31
#include <algorithm>
Y
yaoxuefeng 已提交
32 33
#include <deque>

T
Thunderbrook 已提交
34 35 36 37 38 39 40 41 42
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;

43
void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
44
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
45 46
  platform::Timer timeline;
  timeline.Start();
47
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
48
  MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
49
  gpu_task->init(thread_keys_shard_num_, device_num);
Y
yaoxuefeng 已提交
50 51 52
  auto input_channel = dataset->GetInputChannel();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;
53 54 55 56 57

  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
  auto& device_mutex = gpu_task->mutex_;

Y
yaoxuefeng 已提交
58
  std::vector<std::thread> threads;
T
Thunderbrook 已提交
59
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
60
  auto fleet_ptr = FleetWrapper::GetInstance();
T
Thunderbrook 已提交
61 62 63 64
#endif
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = paddle::distributed::Communicator::GetInstance();
#endif
Y
yaoxuefeng 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

  // data should be in input channel
  thread_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_keys_[i].resize(thread_keys_shard_num_);
  }
  const std::deque<Record>& vec_data = input_channel->GetData();
  size_t total_len = vec_data.size();
  size_t len_per_thread = total_len / thread_keys_thread_num_;
  int remain = total_len % thread_keys_thread_num_;
  size_t begin = 0;
  auto gen_func = [this](const std::deque<Record>& total_data, int begin_index,
                         int end_index, int i) {
    for (auto iter = total_data.begin() + begin_index;
         iter != total_data.begin() + end_index; iter++) {
      const auto& ins = *iter;
      const auto& feasign_v = ins.uint64_feasigns_;
      for (const auto feasign : feasign_v) {
        uint64_t cur_key = feasign.sign().uint64_feasign_;
        int shard_id = cur_key % thread_keys_shard_num_;
85
        this->thread_keys_[i][shard_id].insert(cur_key);
Y
yaoxuefeng 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
      }
    }
  };
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    threads.push_back(std::thread(gen_func, std::ref(vec_data), begin,
                                  begin + len_per_thread + (i < remain ? 1 : 0),
                                  i));
    begin += len_per_thread + (i < remain ? 1 : 0);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
99
  VLOG(1) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
100 101 102

  timeline.Start();

103
  threads.clear();
Y
yaoxuefeng 已提交
104
  // merge thread_keys to shard_keys
105 106 107 108
  auto merge_ins_func = [this, gpu_task](int shard_num) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, thread_keys_[i][shard_num]);
      thread_keys_[i][shard_num].clear();
Y
yaoxuefeng 已提交
109
    }
110 111 112 113 114 115 116 117 118 119 120 121 122
  };

  // for (size_t i = 0; i < thread_keys_.size(); i++) {
  //  gpu_task->batch_add_keys(thread_keys_[i]);
  //  for (int j = 0; j < thread_keys_thread_num_; j++) {
  //    thread_keys_[i][j].clear();
  //  }
  //}
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
    threads.push_back(std::thread(merge_ins_func, i));
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
123 124 125
  }
  timeline.Pause();

Y
yaoxuefeng 已提交
126
  VLOG(1) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
127 128 129 130 131
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

132
  VLOG(1) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
133 134

  for (int i = 0; i < thread_keys_shard_num_; i++) {
135
    VLOG(3) << "GpuPs shard: " << i << " key len: " << local_keys[i].size();
Y
yaoxuefeng 已提交
136 137
    local_ptr[i].resize(local_keys[i].size());
  }
138
  timeline.Start();
139
  auto ptl_func = [this, &local_keys, &local_ptr, &fleet_ptr](int i) {
Y
yaoxuefeng 已提交
140
    size_t key_size = local_keys[i].size();
Y
yaoxuefeng 已提交
141
    int32_t status = -1;
T
Thunderbrook 已提交
142
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    // auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
    //    reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
    //    local_keys[i].data(), key_size);
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
          reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
176 177
#endif
#ifdef PADDLE_WITH_PSCORE
Y
yaoxuefeng 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->_worker_ptr->pull_sparse_ptr(
          reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
208
#endif
Y
yaoxuefeng 已提交
209 210 211 212 213 214 215 216
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
217 218 219 220 221 222 223 224
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(ptl_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
225 226
  VLOG(1) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
          << " seconds.";
Y
yaoxuefeng 已提交
227 228 229 230 231 232 233 234
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
235 236

  timeline.Start();
Y
yaoxuefeng 已提交
237 238 239
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
240 241
#ifdef PADDLE_WITH_PSLIB
  uint16_t pass_id = 0;
Y
yaoxuefeng 已提交
242 243 244 245
  if (multi_node_) {
    record_status = fleet_ptr->pslib_ptr_->_worker_ptr->take_sparse_record(
        table_id_, pass_id, pass_values);
  }
246
#endif
Y
yaoxuefeng 已提交
247 248 249
  auto build_func = [device_num, record_status, &pass_values, &local_keys,
                     &local_ptr, &device_keys, &device_vals,
                     &device_mutex](int i) {
250
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
T
Thunderbrook 已提交
251
#ifdef PADDLE_WITH_PSLIB
252 253
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
T
Thunderbrook 已提交
254 255 256 257 258
#endif

#ifdef PADDLE_WITH_PSCORE
    std::vector<std::vector<paddle::distributed::VALUE*>> task_ptrs(device_num);
#endif
259 260 261 262 263 264

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
265
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
281
#endif
282 283 284 285 286 287 288
    for (int dev = 0; dev < device_num; dev++) {
      device_mutex[dev]->lock();

      int len = task_keys[dev].size();
      int cur = device_keys[dev].size();
      device_keys[dev].resize(device_keys[dev].size() + len);
      device_vals[dev].resize(device_vals[dev].size() + len);
T
Thunderbrook 已提交
289
#ifdef PADDLE_WITH_PSLIB
290 291 292 293 294 295 296 297 298 299 300 301
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        float* ptr_val = task_ptrs[dev][j]->data();
        FeatureValue& val = device_vals[dev][cur + j];
        size_t dim = task_ptrs[dev][j]->size();

        val.delta_score = ptr_val[1];
        val.show = ptr_val[2];
        val.clk = ptr_val[3];
        val.slot = ptr_val[6];
        val.lr = ptr_val[4];
        val.lr_g2sum = ptr_val[5];
T
Thunderbrook 已提交
302
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);
303 304 305 306 307 308 309 310 311 312 313

        if (dim > 7) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val[x + 7];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
Y
yaoxuefeng 已提交
314 315
        }
      }
T
Thunderbrook 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
#endif
#ifdef PADDLE_WITH_PSCORE
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        distributed::VALUE* ptr_val = task_ptrs[dev][j];
        FeatureValue& val = device_vals[dev][cur + j];
        bool has_mf = 1;
        val.delta_score = 0;
        val.show = ptr_val->count_;
        val.clk = 0;
        val.slot = 0;
        val.lr = 0;
        val.lr_g2sum = 0;
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

        if (has_mf) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val->data_[x];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
        }
      }
#endif
344
      VLOG(3) << "GpuPs build hbmps done";
345 346

      device_mutex[dev]->unlock();
Y
yaoxuefeng 已提交
347 348
    }
  };
349

Y
yaoxuefeng 已提交
350
  for (size_t i = 0; i < threads.size(); i++) {
351
    threads[i] = std::thread(build_func, i);
Y
yaoxuefeng 已提交
352 353 354 355 356
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
357 358
  VLOG(1) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
          << " seconds.";
Y
yaoxuefeng 已提交
359 360
}

361
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
362
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
363 364
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
365

366
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
367
  size_t size_max = 0;
368 369
  for (int i = 0; i < device_num; i++) {
    feature_keys_count[i] = gpu_task->device_keys_[i].size();
370
    VLOG(1) << i << " card contains feasign nums: " << feature_keys_count[i];
T
Thunderbrook 已提交
371 372 373
    size_max = std::max(size_max, feature_keys_count[i]);
  }
  if (HeterPs_) {
374 375
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
376
  }
377 378 379 380
  if (size_max <= 0) {
    VLOG(1) << "Skip build gpu ps cause feasign nums = " << size_max;
    return;
  }
381
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
382
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
383
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
Y
yaoxuefeng 已提交
384
  auto build_func = [this, &gpu_task, &feature_keys_count](int i) {
385
    VLOG(3) << "building table: " << i;
386 387 388
    this->HeterPs_->build_ps(i, gpu_task->device_keys_[i].data(),
                             gpu_task->device_values_[i].data(),
                             feature_keys_count[i], 500000, 2);
389 390 391
    if (feature_keys_count[i] > 0) {
      HeterPs_->show_one_table(i);
    }
Y
yaoxuefeng 已提交
392 393 394 395 396 397
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
398 399
  }
  timeline.Pause();
400
  VLOG(1) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
401
          << " s.";
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }

  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
  data_ready_channel_->Put(gpu_task);
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
  VLOG(3) << "start build CPU&GPU ps thread.";
  build_cpu_threads_ = std::thread([this] { build_cpu_thread(); });
  build_gpu_threads_ = std::thread([this] { build_gpu_thread(); });
}

void PSGPUWrapper::build_cpu_thread() {
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
    VLOG(3) << "thread BuildTask start.";
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
    BuildTask(gpu_task);
    timer.Pause();
    VLOG(1) << "thread BuildTask end, cost time: " << timer.ElapsedSec() << "s";
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

void PSGPUWrapper::build_gpu_thread() {
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!gpu_free_channel_->Get(gpu_task)) {
      continue;
    }
    if (!buildcpu_ready_channel_->Get(gpu_task)) {
      continue;
    }
    VLOG(3) << "thread BuildGPUTask start.";
    platform::Timer timer;
    timer.Start();
    BuildGPUTask(gpu_task);
    timer.Pause();
    VLOG(1) << "thread BuildGPUTask end, cost time: " << timer.ElapsedSec()
            << "s";

    gpu_task_pool_.Push(gpu_task);
    train_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build gpu thread end";
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
  // load+build done
  if (!train_ready_channel_->Get(current_task_)) {
    PADDLE_THROW(platform::errors::Fatal("train_ready_channel_ failed."));
  }
  timer.Pause();
  VLOG(1) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
  for (size_t i = 0; i < heter_devices_.size(); i++) {
    keysize_max = std::max(keysize_max, current_task_->device_keys_[i].size());
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
  VLOG(1) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf = memory::AllocShared(place, total_length * sizeof(FeatureValue));
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::AllocShared(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
569
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin GPUPS PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf =
      memory::AllocShared(place, total_length * sizeof(FeaturePushValue));
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
615
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
616 617 618 619 620 621 622 623
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif