clip_op.cc 6.8 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
W
wanghaoshuang 已提交
14

S
sneaxiy 已提交
15
#include <memory>
W
wuyefeilin 已提交
16
#include "paddle/fluid/framework/infershape_utils.h"
Z
Zhong Hui 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
W
wuyefeilin 已提交
19 20
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
W
wanghaoshuang 已提交
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class ClipOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
28 29 30 31 32 33 34 35 36 37 38 39 40 41
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
W
wanghaoshuang 已提交
42 43
};

44
template <typename AttrType>
W
wanghaoshuang 已提交
45 46
class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
47
  void Make() override {
48
    AddInput("X",
S
SunGaofeng 已提交
49 50
             "Tensor, the input of clip op, data type should be float32 or "
             "float64.");
51 52 53 54 55 56 57 58
    AddInput("Min",
             "Tensor, the lower bound, data type should be float32 "
             "or float64.")
        .AsDispensable();
    AddInput("Max",
             "Tensor, the upper bound, data type should be float32 "
             "or float64.")
        .AsDispensable();
S
SunGaofeng 已提交
59 60 61 62 63 64
    AddOutput(
        "Out",
        "Tensor, the clipped tensor, with the same shape and data type as "
        "input(x)");
    AddAttr<AttrType>("min", "float number, the minimum value to clip by.");
    AddAttr<AttrType>("max", "float number, the maximum value to clip by.");
65 66
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
67 68
        .SetDefault(false)
        .AsExtra();
69 70 71 72
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
73 74
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
W
wanghaoshuang 已提交
75
    AddComment(R"DOC(
76 77
Clip Operator.

78
The clip operator limits the value of given input within an interval [min, max],
S
SunGaofeng 已提交
79
just as the following equation,
K
kexinzhao 已提交
80 81

$$
S
SunGaofeng 已提交
82
Out = \MIN(\MAX(x, min), max)
K
kexinzhao 已提交
83
$$
84

W
wanghaoshuang 已提交
85 86 87 88 89 90 91 92
)DOC");
  }
};

class ClipOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

93
  void InferShape(framework::InferShapeContext* ctx) const override {
94 95 96
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "clip_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "clip_grad");
Q
Qiao Longfei 已提交
97 98 99
    auto x_dims = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
W
wanghaoshuang 已提交
100
    }
W
wanghaoshuang 已提交
101
  }
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
W
wanghaoshuang 已提交
117 118
};

H
hong 已提交
119 120
template <typename T>
class ClipGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
121
 public:
H
hong 已提交
122
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
123 124

 protected:
125
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
126
    op->SetType("clip_grad");
H
hong 已提交
127
    op->SetInput("X", this->Input("X"));
128 129 130 131 132 133
    if (this->HasInput("Min")) {
      op->SetInput("Min", this->Input("Min"));
    }
    if (this->HasInput("Max")) {
      op->SetInput("Max", this->Input("Max"));
    }
H
hong 已提交
134 135 136
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
137 138 139
  }
};

140 141 142 143 144
DECLARE_INPLACE_OP_INFERER(ClipInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ClipGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});

Q
qingqing01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
template <typename T>
class ClipDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("clip_grad");
    op->SetInput("X", this->Input("X"));
    if (this->HasInput("Min")) {
      op->SetInput("Min", this->Input("Min"));
    }
    if (this->HasInput("Max")) {
      op->SetInput("Max", this->Input("Max"));
    }
    op->SetInput(framework::GradVarName("Out"),
                 this->OutputGrad(framework::GradVarName("X")));
    op->SetOutput(framework::GradVarName("X"),
                  this->InputGrad(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
  }
};

W
wanghaoshuang 已提交
168 169 170 171
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
wuyefeilin 已提交
172 173
DECLARE_INFER_SHAPE_FUNCTOR(clip, ClipInferShapeFunctor,
                            PD_INFER_META(phi::UnchangedInferMeta));
Y
Yang Yang 已提交
174
REGISTER_OPERATOR(clip, ops::ClipOp, ops::ClipOpMaker<float>,
H
hong 已提交
175 176
                  ops::ClipGradOpMaker<paddle::framework::OpDesc>,
                  ops::ClipGradOpMaker<paddle::imperative::OpBase>,
W
wuyefeilin 已提交
177
                  ops::ClipInplaceInferer, ClipInferShapeFunctor);
Q
qingqing01 已提交
178 179 180
REGISTER_OPERATOR(clip_grad, ops::ClipOpGrad, ops::ClipGradInplaceInferer,
                  ops::ClipDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::ClipDoubleGradOpMaker<paddle::imperative::OpBase>);
Z
Zhong Hui 已提交
181 182 183 184 185 186 187 188 189 190 191 192

REGISTER_OP_VERSION(clip)
    .AddCheckpoint(
        R"ROC(
              Upgrade clip add a new input [Min])ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewInput("Min",
                      "Pass the mix, min value as input, not attribute. Min is "
                      "dispensable.")
            .NewInput("Max",
                      "Pass the mix, min value as input, not attribute. Max is "
                      "dispensable."));