npu_op_runner.h 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_ASCEND_CL
16 17
#pragma once
#include <paddle/fluid/framework/operator.h>
18
#include <paddle/fluid/framework/type_defs.h>
19 20 21 22 23

#include <string>
#include <vector>

#include "acl/acl.h"
24
#include "paddle/fluid/framework/tensor_util.h"
25 26 27 28 29 30 31
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
32 33
using NPUAttribute = framework::NPUAttribute;
using NPUAttributeMap = framework::NPUAttributeMap;
34
using DeviceContextPool = platform::DeviceContextPool;
35 36 37

class NpuOpRunner {
 public:
38 39 40 41 42 43
  NpuOpRunner();
  explicit NpuOpRunner(const std::string &op_type);
  NpuOpRunner(const std::string &op_type,
              const std::vector<Tensor> &inputs = {},
              const std::vector<Tensor> &outputs = {},
              const NPUAttributeMap &attrs = {});
44

L
Leo Chen 已提交
45 46 47 48 49 50 51 52
  // NOTE(zhiqiu): why forbid copy and operator= ?
  // Since we will free the tensor_descs and data_buffers in the ~NpuOpRunner,
  // if shallow copy is performed on tensor_descs and data_buffers, it may
  // result
  // in use-after-free bugs.
  NpuOpRunner(const NpuOpRunner &runner) = delete;
  NpuOpRunner &operator=(const NpuOpRunner &runner) = delete;

53 54 55 56
  ~NpuOpRunner();

  const std::string &Type();

57 58
  NpuOpRunner &SetType(const std::string &name);

59
  NpuOpRunner &AddAttr(const std::string &name, const NPUAttribute &attr);
60

61 62 63 64 65 66
  // NOTE(qili93): need to add indivisual api for aclopSetAttrDataType
  // as typeid(aclDataType) and typeid(framework::proto::VarType::Type)
  // always go to attr.type() == typeid(int) to call aclopSetAttrInt
  NpuOpRunner &AddAttrDataType(const std::string &name,
                               const NPUAttribute &attr);

67
  NpuOpRunner &AddAttrs(const NPUAttributeMap &attrs);
68 69 70

  NpuOpRunner &AddInput(const Tensor &tensor);

71 72 73 74 75 76 77 78 79
  // NOTE(zhiqiu): CANN-5.0.2 support input tensors on host.
  // Specifically, the tensor of shape, tensor of dims, etc, which are are small
  // vector/list.
  NpuOpRunner &AddInput(const Tensor &tensor, aclMemType mem_type);

  NpuOpRunner &AddInput(std::vector<int32_t> &&dims);

  NpuOpRunner &AddInput(std::vector<int64_t> &&dims);

80 81 82 83
  NpuOpRunner &AddInput(std::vector<float> &&values);

  NpuOpRunner &AddInput(std::vector<double> &&values);

84 85 86 87
  NpuOpRunner &AddOutput(const Tensor &tensor);

  NpuOpRunner &AddInputs(const std::vector<Tensor> &tensors);

88 89
  NpuOpRunner &AddInputNames(const std::vector<std::string> &names);

90 91 92 93 94 95 96 97 98 99 100 101 102 103
  NpuOpRunner &AddOutputs(const std::vector<Tensor> &tensors);

  aclTensorDesc *GetInputDesc(size_t index);

  aclTensorDesc *GetOutputDesc(size_t index);

  std::vector<aclTensorDesc *> &GetInputDescs();

  std::vector<aclTensorDesc *> &GetOutputDescs();

  std::vector<aclDataBuffer *> &GetInputBuffers();

  std::vector<aclDataBuffer *> &GetOutputBuffers();

L
Leo Chen 已提交
104
  void Run(aclrtStream stream = nullptr) const;
105

106 107 108 109 110 111 112 113 114 115
  static void TypeAdapter(
      const std::vector<Tensor> &inputs, const std::vector<Tensor> &outputs,
      const NPUAttributeMap &attrs, const platform::NPUDeviceContext &dev_ctx,
      std::function<void(const std::vector<Tensor> &,
                         const std::vector<Tensor> &, const NPUAttributeMap &,
                         const platform::NPUDeviceContext &)>
          op_runner,
      const std::vector<framework::proto::VarType::Type> &input_type,
      const std::vector<framework::proto::VarType::Type> &output_type);

116
 private:
117 118
  aclTensorDesc *CreateTensorDesc(Tensor tensor,
                                  aclMemType mem_type = ACL_MEMTYPE_DEVICE);
119 120 121 122 123 124 125 126
  aclDataBuffer *CreateDataBuffer(Tensor tensor);

 private:
  std::string op_type_;
  std::vector<aclDataBuffer *> input_buffers_;
  std::vector<aclDataBuffer *> output_buffers_;
  std::vector<aclTensorDesc *> input_descs_;
  std::vector<aclTensorDesc *> output_descs_;
127
  std::vector<Tensor> host_tensors_;
128 129 130
  aclopAttr *attr_{nullptr};
};

131 132
aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype);

133 134 135 136 137 138 139 140 141 142
aclrtStream GetCurrentNPUStream(int device_id = -1);

template <typename T>
void FillNpuTensorWithConstant(Tensor *tensor, T val) {
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("The tensor should be initialized."));
  PADDLE_ENFORCE_EQ(
      platform::is_npu_place(tensor->place()), true,
      platform::errors::InvalidArgument("The tensor should be on NPUPlace."));
143 144 145 146 147 148 149 150 151

  int numel = tensor->numel();
  if (numel == 1) {
    Tensor npu_pinned_tensor(tensor->type());
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>({1}, npu_pinned_place);
    *npu_pinned_ptr = val;

152
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, tensor->place()),
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
                 tensor->data<void>(), npu_pinned_place, npu_pinned_ptr,
                 sizeof(T), GetCurrentNPUStream());

    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator *>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
    paddle::memory::allocation::Allocation *allocation =
        npu_pinned_tensor.Holder().get();

    npu_pinned_allocator->RecordEvent(allocation, GetCurrentNPUStream());
  } else {
    std::vector<T> vec(numel, static_cast<T>(val));
    auto device_id = platform::GetCurrentNPUDeviceId();
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
        pool.Get(platform::NPUPlace(device_id)));

    paddle::framework::TensorFromVector<T>(vec, *dev_ctx, tensor);
173 174 175
  }
}

176 177
}  // namespace operators
}  // namespace paddle
178
#endif