spawn_runner_base.py 2.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function, division

import numpy as np
import unittest

import paddle

# used by model.run_trainer in test_dist_base
from test_dist_base import RUN_STEP


# NOTE: compatible TestParallelDyGraphRunnerBase args
class SpawnAssistTestArgs(object):
    update_method = "local"
    trainer_id = 0
30
    find_unused_parameters = False
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82


class TestDistSpawnRunner(unittest.TestCase):
    def setUp(self):
        # NOTE(chenweihang): keep consistent with
        # TestDistBase.check_with_place
        self.nprocs = 2

    def _run(self, model, args):
        args.update_method = "local"
        return model.run_trainer_with_spawn(args)

    def _run_parallel(self, model, args):
        args.update_method = "nccl2"
        context = paddle.distributed.spawn(
            func=model.run_trainer_with_spawn,
            args=(args, ),
            nprocs=self.nprocs,
            join=True)
        result_list = []
        for res_queue in context.return_queues:
            result_list.append(res_queue.get())
        return result_list

    def check_dist_result_with_spawn(self, test_class, delta=1e-3):
        # 0. prepare model and args
        model = test_class()
        args = SpawnAssistTestArgs()

        # 1. calc signal card loss
        losses = self._run(model, args)

        # 2. calc multi card loss (nccl mode)
        dist_losses_list = self._run_parallel(model, args)

        # 3. compare losses
        for step_id in range(RUN_STEP):
            loss = losses[step_id]
            dist_loss_sum = None
            for dist_losses in dist_losses_list:
                if dist_loss_sum is None:
                    dist_loss_sum = np.array(dist_losses[step_id])
                else:
                    dist_loss_sum += np.array(dist_losses[step_id])
            dist_loss = dist_loss_sum / self.nprocs
            self.assertAlmostEqual(
                loss,
                dist_loss,
                delta=delta,
                msg="The results of single-card execution and multi-card execution are inconsistent."
                "signal-card loss is:\n{}\nmulti-card average loss is:\n{}\n".
                format(loss, dist_loss))