test_nn_grad.py 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

20
import paddle
21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
26
paddle.enable_static()
27 28


29
class TestSliceOpDoubleGradCheck(unittest.TestCase):
30
    @prog_scope()
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    def func(self, place):
        self.config()

        out = fluid.layers.slice(
            self.inputs, axes=self.axes, starts=self.starts, ends=self.ends)
        gradient_checker.double_grad_check(
            [self.inputs], out, x_init=self.x_arr, place=place)

    def config(self):
        self.starts = [1, 0, -1]
        self.ends = [3, 3, 6]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64")
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 4, 5, 2], name='x')

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.func(place)


class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck):
    def config(self):
        self.starts = [1, -1, 1]
        self.ends = [3, 3, 3]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 3, 3]).astype("float64")
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 3, 3], name='x3')


L
lvmengsi 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_mean(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_sum(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

103 104 105 106 107 108 109 110
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


111
class TestReshapeDoubleGradCheck(unittest.TestCase):
L
lilong12 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        expand_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.expand(x, expand_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandDoubleGradCheck(unittest.TestCase):
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        new_shape = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.reshape(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


159
class TestTileDoubleGradCheck(unittest.TestCase):
160 161 162
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [4, 9])

163 164 165 166 167 168 169 170 171 172 173 174 175 176
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        repeat_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.tile(x, repeat_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)
177 178
        gradient_checker.double_grad_check_for_dygraph(
            self.tile_wrapper, [x], out, x_init=x_arr, place=place)
179 180 181 182 183 184 185 186 187 188

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandV2DoubleGradCheck(unittest.TestCase):
189 190 191
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [4, 12])

192 193 194 195 196 197 198 199 200 201 202 203 204 205
    @prog_scope()
    def func(self, place):
        x_shape = [1, 12]
        new_shape = [4, 12]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.expand(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)
206 207
        gradient_checker.double_grad_check_for_dygraph(
            self.expand_wrapper, [x], out, x_init=x_arr, place=place)
208 209 210 211 212 213 214 215 216

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
class TestSqueezeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [1, 3, 1, 40]
        axes = [0, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.squeeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        axes = [1, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.unsqueeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qingqing01 已提交
265
class TestClipDoubleGradCheck(unittest.TestCase):
266 267 268
    def clip_wrapper(self, x):
        return paddle.clip(x[0], min=-1., max=1.)

Q
qingqing01 已提交
269 270 271 272 273 274 275 276 277 278 279
    @prog_scope()
    def func(self, place):
        x_shape = [2, 4, 10]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.clip(x, min=-1., max=1.)
        x_arr = np.random.uniform(-5., 5., x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)
280 281
        gradient_checker.double_grad_check_for_dygraph(
            self.clip_wrapper, [x], out, x_init=x_arr, place=place)
Q
qingqing01 已提交
282 283 284 285 286 287 288 289 290

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
class TestTransposeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        perm = [1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeDoubleGradCheckCase1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        perm = [0, 2, 3, 1]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
ceci3 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
class TestConstantPadDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConstantPadDoubleGradCheckCase1(TestConstantPadDoubleGradCheck):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 0, 1, 0, 1, 0, 1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)


class TestConcatDoubleGradCheck(unittest.TestCase):
375 376 377
    def concat_wrapper(self, x):
        return paddle.concat(x, axis=0)

C
ceci3 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        dtype = np.float64

        x1 = layers.data('x', x_shape, False, dtype)
        x2 = layers.data('x', x_shape, False, dtype)
        x1.persistable = True
        x2.persistable = True
        out = paddle.concat([x1, x2], axis=0)
        x2_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        x1_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x1, x2], out, x_init=[x1_arr, x2_arr], place=place)
394 395 396 397 398
        gradient_checker.double_grad_check_for_dygraph(
            self.concat_wrapper, [x1, x2],
            out,
            x_init=[x1_arr, x2_arr],
            place=place)
C
ceci3 已提交
399 400 401 402 403 404 405 406 407

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
class TestAvgPool2DDoubleGradCheckCase1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32")

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=2, pool_type="avg")
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase2(unittest.TestCase):
433 434 435 436
    def pool2d_wrapper(self, x):
        return paddle.nn.functional.avg_pool2d(
            x[0], kernel_size=2, data_format="NHWC")

437 438 439 440 441 442 443 444 445
    @prog_scope()
    def func(self, place):
        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NHWC.persistable = True
446 447
        y = paddle.nn.functional.avg_pool2d(
            input_NHWC, kernel_size=2, data_format="NHWC")
448 449 450 451 452
        x_arr = np.random.uniform(-1, 1, [2, 5, 5, 3]).astype(np.float32)

        gradient_checker.double_grad_check(
            [input_NHWC], y, x_init=x_arr, place=place, eps=0.05)

453 454 455
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NHWC], y, x_init=x_arr, place=place)

456 457 458 459 460 461 462 463 464
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase3(unittest.TestCase):
465 466 467 468
    def pool2d_wrapper(self, x):
        return paddle.nn.functional.avg_pool2d(
            x[0], kernel_size=2, padding=[1, 1])

469 470 471 472 473 474 475 476 477
    @prog_scope()
    def func(self, place):
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32")

        input_NCHW.persistable = True
478 479
        y = paddle.nn.functional.avg_pool2d(
            input_NCHW, kernel_size=2, padding=[1, 1])
480 481 482 483
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05)
484 485
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NCHW], y, x_init=x_arr, place=place)
486 487 488 489 490 491 492 493 494 495

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase4(unittest.TestCase):
496 497 498
    def pool2d_wrapper(self, x):
        return paddle.nn.functional.avg_pool2d(x[0], kernel_size=[4, 4])

499 500 501 502 503 504 505 506 507 508
    @prog_scope()
    def func(self, place):
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32")

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=[4, 4], pool_type="avg")
509
        y = paddle.nn.functional.avg_pool2d(input_NCHW, kernel_size=[4, 4])
510 511 512 513
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05)
514 515
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NCHW], y, x_init=x_arr, place=place)
516 517 518 519 520 521 522 523 524

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


525 526
if __name__ == "__main__":
    unittest.main()