fleet_base.py 54.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from types import MethodType
21
import numpy as np
22
from paddle.fluid.framework import dygraph_only, _global_flags
23
from paddle.fluid import compiler
24
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
25
from .strategy_compiler import StrategyCompiler
26
from .distributed_strategy import DistributedStrategy
27 28
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
29
from paddle.fluid.wrapped_decorator import wrap_decorator
30
from paddle.fluid.dygraph import parallel_helper
31
from paddle.fluid.ir import apply_build_strategy
32
from . import topology as tp
33
from .topology import ParallelMode
34
from ..meta_parallel import TensorParallel, model_parallel_random_seed
J
JZ-LIANG 已提交
35
from ..meta_parallel import PipelineParallel, ShardingParallel
36
from ..meta_optimizers import HybridParallelOptimizer
37
from paddle import _C_ops
38

39 40
__all__ = []

41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
        # have conflict with fuse_all_reduce_ops because 
        # RawProgramOptimizer also inserts coalesce_tensor 
        # into program. These two procedures may conflict  
        # in which vars are to be fused. 
        warnings.warn(
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

    return apply_build_strategy(main_program, startup_program, build_strategy,
                                pass_attrs)


69 70 71 72 73 74 75 76 77 78 79 80
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


97
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
98
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
99 100


101 102 103
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
104
    Please reference the https://github.com/PaddlePaddle/FleetX for details
105 106 107 108 109


    Returns:
        Fleet: A Fleet instance

110
    Example for collective training:
1
123malin 已提交
111

112 113
        .. code-block:: python

1
123malin 已提交
114 115
            import paddle
            paddle.enable_static()
116
            import paddle.distributed.fleet as fleet
117 118 119

            fleet.init(is_collective=True)

120 121 122
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
123 124 125 126 127 128 129 130

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
131 132
            import paddle
            paddle.enable_static()
133 134
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
135
            fleet.init(strategy=strategy)
136

137
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
138
            optimizer = fleet.distributed_optimizer(optimizer)
139

140 141
            if fleet.is_first_worker():
                print("this is first worker")
142

143 144
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
145

146 147 148
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
149

150 151
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
152

153 154 155
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
156 157


158 159 160
    """

    def __init__(self):
161
        self._role_maker = None
162
        self.strategy_compiler = None
163
        self._is_collective = False
164
        self._runtime_handle = None
D
Dong Daxiang 已提交
165 166
        self._util = None
        self._context = {}
167

168
    def init(self, role_maker=None, is_collective=False, strategy=None):
169 170 171
        """
        Initialize role_maker in Fleet.

172 173 174 175 176 177 178 179 180 181 182
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
183 184 185 186
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
209
                role = fleet.PaddleCloudRoleMaker()
210
                fleet.init(role)
211

212 213 214 215 216 217
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
218
                fleet.init(strategy=strategy)
219

220
        """
S
ShenLiang 已提交
221 222 223
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
224 225

        if role_maker is None:
226 227 228 229 230 231
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
232 233
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
234
        else:
235 236
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
237
                self._is_collective = role_maker._is_collective
238 239 240 241
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
242
        self._role_maker._generate_role()
243

244 245 246
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

247
        self.strategy_compiler = StrategyCompiler()
248 249 250 251 252 253 254 255 256

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

257
        if paddle.fluid.framework.in_dygraph_mode():
258
            if self.worker_num() == 1:
259 260 261
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
262
                return
263 264 265 266
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
267 268 269 270 271 272 273 274 275
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
276
                paddle.distributed.init_parallel_env()
277

278 279 280 281 282 283 284
            # init hybrid parallel environment in dygraph
            if tp._HYBRID_PARALLEL_GROUP is None:
                self._init_hybrid_parallel_env()
            else:
                warnings.warn(
                    "The dygraph hybrid parallel environment has been initialized."
                )
W
WangXi 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

Y
Yuang Liu 已提交
301 302 303
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
304
            # hybrid group
Y
Yuang Liu 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
            if use_mp is False: return

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
                tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
                mp_degree_tensor_parallel = int(tensor_parallel_configs[
                    'tensor_parallel_degree'])

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
320

Y
Yuang Liu 已提交
321
            mp_degree = mp_degree_sharding if use_sharding else mp_degree_tensor_parallel
W
WangXi 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
335 336 337 338 339 340 341 342

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
343
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
344 345 346

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
J
JZ-LIANG 已提交
347
        assert self.sharding_degree >= 0, "sharding_degree should be greater or equal to 0"
348 349 350 351 352 353 354 355 356 357 358

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
359 360 361 362 363
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
                self.dp_degree, self.pp_degree, self.sharding_degree,
                self.mp_degree
            ])
364 365 366

        self._hcg = tp.HybridCommunicateGroup(self._topology)

367 368 369 370 371 372 373 374
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

375 376 377 378 379 380 381 382
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

383 384 385 386 387 388 389
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
390

391 392 393 394 395 396 397 398
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

399
        """
400
        return self._role_maker._is_first_worker()
401 402 403 404 405 406 407

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
408 409 410 411

        Examples:

            .. code-block:: python
1
123malin 已提交
412

413 414 415 416
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

417
        """
418
        return self._role_maker._worker_index()
419 420 421 422 423 424 425

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
426

427
        Examples:
1
123malin 已提交
428

429 430 431 432 433 434
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

435
        """
436
        return self._role_maker._worker_num()
437

438 439 440 441 442 443 444 445 446 447 448 449
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

450 451 452 453 454 455 456
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
457 458

        Examples:
1
123malin 已提交
459

460 461 462 463 464 465
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

466
        """
467
        return self._role_maker._is_worker()
468 469 470

    def worker_endpoints(self, to_string=False):
        """
471
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
472 473 474

        Returns:
            list/string: server endpoints
475 476

        Examples:
1
123malin 已提交
477

478 479 480 481 482 483
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

484 485
        """
        if to_string:
486
            return ",".join(self._role_maker._get_trainer_endpoints())
487
        else:
488
            return self._role_maker._get_trainer_endpoints()
489 490 491 492 493 494 495

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
496 497

        Examples:
1
123malin 已提交
498

499
            .. code-block:: python
1
123malin 已提交
500 501 502 503

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
504
        """
505
        return len(self._role_maker._get_pserver_endpoints())
506 507 508 509 510 511 512

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
513 514

        Examples:
1
123malin 已提交
515

516 517 518 519 520 521
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

522
        """
523
        return self._role_maker._server_index()
524 525 526 527 528 529 530

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
531 532

        Examples:
1
123malin 已提交
533

534 535 536 537 538 539
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

540
        """
541

542
        if to_string:
543
            return ",".join(self._role_maker._get_pserver_endpoints())
544
        else:
545
            return self._role_maker._get_pserver_endpoints()
546 547 548 549 550 551 552 553

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
554 555 556 557

        Examples:

            .. code-block:: python
1
123malin 已提交
558

559 560 561 562
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

563
        """
564
        return self._role_maker._is_server(
565
        ) or self._role_maker._is_heter_worker()
566 567 568

    def barrier_worker(self):
        """
569 570 571 572
        barrier all workers

        Returns:
            None
573
        """
574
        self._role_maker._barrier("worker")
575

576
    @is_non_distributed_check
577
    @inited_runtime_handler
578 579
    def init_worker(self):
        """
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

598 599 600
        """
        self._runtime_handle._init_worker()

601
    @is_non_distributed_check
602
    @inited_runtime_handler
603
    def init_server(self, *args, **kwargs):
604
        """
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

624
        """
625
        self._runtime_handle._init_server(*args, **kwargs)
626

T
Thunderbrook 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_model("path", "mode")

        """
        self._runtime_handle.load_model(path, mode)

650
    @is_non_distributed_check
651
    @inited_runtime_handler
652 653
    def run_server(self):
        """
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

672 673 674
        """
        self._runtime_handle._run_server()

675
    @is_non_distributed_check
676
    @inited_runtime_handler
677 678
    def stop_worker(self):
        """
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

696 697 698
        """
        self._runtime_handle._stop_worker()

T
tangwei12 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0)
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode)

742 743 744 745 746 747
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
748 749
                             export_for_deployment=True,
                             mode=0):
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """
T
tangwei12 已提交
769 770 771
        # warnings.warn(
        #     "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
772

773 774
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
775
            export_for_deployment, mode)
776

777
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
778 779
        """

1
123malin 已提交
780
        saves all persistable tensors from :code:`main_program` to
781 782
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
783 784
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
785 786 787
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
788
            executor(Executor): The executor to run for saving persistable tensors.
789 790 791 792 793
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
794
            main_program(Program, optional): The program whose persistbale tensors will
795 796 797 798 799 800 801 802 803 804
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
805 806
                import paddle
                paddle.enable_static()
807 808 809 810 811 812 813
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
814 815
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
816 817

        """
T
tangwei12 已提交
818 819 820
        # warnings.warn(
        #     "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
821

822 823
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
824

825 826 827
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

828
    def distributed_optimizer(self, optimizer, strategy=None):
829
        """
830 831 832 833 834 835 836
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
837 838 839 840 841
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
842

843
        Returns:
844
            Fleet: instance of fleet.
845 846

        Examples:
847

848
            .. code-block:: python
849

1
123malin 已提交
850
                import paddle
851
                import paddle.distributed.fleet as fleet
1
123malin 已提交
852
                fleet.init(is_collective=True)
853 854 855 856
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

857 858
        """
        self.user_defined_optimizer = optimizer
859

860
        if strategy is not None:
T
tangwei12 已提交
861 862 863 864 865 866 867
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
868
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
869 870

        self._context = {}
S
ShenLiang 已提交
871 872

        if paddle.fluid.framework.in_dygraph_mode():
873 874 875 876 877
            if self.worker_num() > 1:
                return HybridParallelOptimizer(optimizer, self._hcg,
                                               self._user_defined_strategy)
            else:
                return optimizer
878 879
        return self

880
    @dygraph_only
881
    def distributed_model(self, model):
882
        """
883 884 885 886 887 888 889
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
890 891

        Examples:
892

893 894
            .. code-block:: python

895 896 897 898 899 900 901 902 903
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
904

905 906
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
907

1
123malin 已提交
908
                # 1. initialize fleet environment
909 910
                fleet.init(is_collective=True)

1
123malin 已提交
911
                # 2. create layer & optimizer
912 913 914 915 916
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
917
                # 3. get data_parallel model using fleet
918 919 920
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
921
                # 4. run layer
922 923 924 925 926 927 928 929 930 931 932 933
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

934

935
        """
936 937 938
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
J
JZ-LIANG 已提交
939 940 941 942 943

        if self._hcg.get_parallel_mode() == ParallelMode.SHARDING_PARALLEL:
            distributed_model = ShardingParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
        elif self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
944 945 946 947 948 949 950 951

            # NOTE (JZ-LIANG) init parameters broadcast within sharding group
            # normally it should be done inside DataParallel
            if self.sharding_degree > 1:
                from paddle.distributed.fleet.utils.hybrid_parallel_util import broadcast_mp_parameters, broadcast_sharding_parameters
                assert self.sharding_degree == self._hcg.get_sharding_parallel_world_size(
                )
                broadcast_sharding_parameters(model, self._hcg)
952 953 954 955 956 957 958 959
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
960 961
        elif self._hcg.get_parallel_mode() == ParallelMode.TENSOR_PARALLEL:
            distributed_model = TensorParallel(
962
                model, self._hcg, strategy=self._user_defined_strategy)
963 964 965
        elif self._hcg.get_parallel_mode() == ParallelMode.PIPELINE_PARALLEL:
            distributed_model = PipelineParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
J
JZ-LIANG 已提交
966

967
        return distributed_model
968 969 970 971 972

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
973
        (Only work in dygraph mode)
974 975 976 977 978 979 980

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

981 982 983 984 985
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
986

987
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
988
                a = paddle.to_tensor(value)
989

990 991
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
992

993 994 995
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
996 997 998 999 1000 1001 1002 1003
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
1004
        (Only work in dygraph mode)
1005 1006 1007 1008

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

1009 1010
        Returns:
            None
1011 1012 1013 1014

        Examples:
            .. code-block:: python

1015 1016 1017
                import numpy as np
                import paddle
                from paddle.distributed import fleet
1018

1019 1020 1021
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1022
                a = paddle.to_tensor(value)
1023

1024 1025
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1026

1027 1028 1029
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
1030 1031 1032
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
1033 1034 1035 1036 1037 1038 1039 1040
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
1041
        (Only work in dygraph mode)
1042

1043 1044 1045
        Args:
            value (float|Tensor): the value of learning rate

1046 1047
        Returns: 
            None 
1048 1049 1050 1051

        Examples:
            .. code-block:: python

1052 1053 1054
                import numpy as np
                import paddle
                from paddle.distributed import fleet
1055

1056
                fleet.init(is_collective=True)
1057

1058
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1059
                a = paddle.to_tensor(value)
1060

1061 1062
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
1078 1079 1080 1081 1082 1083 1084 1085
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
1086
        (Only work in dygraph mode)
1087 1088 1089 1090 1091

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
1092

1093 1094
            .. code-block:: python

1095 1096 1097 1098 1099
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
1100

1101
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1102
                a = paddle.to_tensor(value)
1103

1104 1105
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1106

1107 1108
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
1109

1110 1111
                lr = adam.get_lr()
                print(lr) # 0.01
1112 1113 1114 1115 1116 1117 1118 1119
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
1120
        (Only work in dygraph mode)
1121

1122 1123
        Returns:
            None
1124 1125

        Examples:
1
123malin 已提交
1126

1127 1128
            .. code-block:: python

1129 1130 1131
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1132

1133 1134 1135 1136 1137
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1138

1139 1140
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1141

1
123malin 已提交
1142
                # 1. initialize fleet environment
1143 1144
                fleet.init(is_collective=True)

1
123malin 已提交
1145
                # 2. create layer & optimizer
1146 1147 1148 1149 1150
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1151
                # 3. get data_parallel model using fleet
1152 1153 1154
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1155
                # 4. run layer
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
1176 1177
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
1178

1179 1180
        Returns: 
            None
1181 1182

        Examples:
1
123malin 已提交
1183

1184 1185
            .. code-block:: python

1186 1187 1188
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1189

1190 1191 1192 1193 1194
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1195

1196 1197
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1198

1
123malin 已提交
1199
                # 1. initialize fleet environment
1200 1201
                fleet.init(is_collective=True)

1
123malin 已提交
1202
                # 2. create layer & optimizer
1203 1204 1205 1206 1207
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1208
                # 3. get data_parallel model using fleet
1209 1210 1211
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1212
                # 4. run layer
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1246 1247
        """Return the real-time loss scaling factor.
        """
1248 1249 1250
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1311
        amp_optimizer = self._get_amp_optimizer()
1312
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1313

D
Dong Daxiang 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1341 1342 1343 1344 1345 1346 1347 1348 1349
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1350
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1351 1352 1353
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1354
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1355 1356
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1357
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1358 1359 1360 1361
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1362
            by minimize and a list of (param, grad) tensor pairs, param is
1363
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1364 1365
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1366 1367 1368
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1369

1370
            .. code-block:: python
1371

1372
                import paddle
1
123malin 已提交
1373
                paddle.enable_static()
1374
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1386

1
123malin 已提交
1387
                fleet.init(is_collective=True)
1388 1389 1390 1391
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1392

1393
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1394 1395

        """
D
Dong Daxiang 已提交
1396 1397 1398
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1399 1400 1401
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1402
            self._context = context
1403 1404
            return target_opt.minimize(loss)

1405 1406
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1407 1408
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1409 1410
        if startup_program == None:
            self.origin_startup_program = \
1411 1412
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1413 1414 1415
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1416

1417 1418
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1419

1420 1421 1422 1423 1424 1425
        # Use the auto-parallel's routines instead
        if self._user_defined_strategy.semi_auto:
            from ...auto_parallel.parallelizer import AutoParallelizer
            auto_parallelizer = AutoParallelizer(self)
            optimize_ops, params_grads, dist_startup_prog, dist_main_prog = auto_parallelizer.parallelize(
                loss, startup_program, parameter_list, no_grad_set)
1426

1427 1428
            return optimize_ops, params_grads, dist_startup_prog, dist_main_prog

1429 1430 1431 1432
        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1433

D
Dong Daxiang 已提交
1434 1435 1436
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1437 1438 1439 1440 1441 1442

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1443
        if copy_user_defined_strategy._is_strict_auto():
1444 1445
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1446
                opt._enable_strategy(copy_user_defined_strategy, context)
1447

1448 1449
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1450
        can_not_apply_optimizer_list = []
1451 1452 1453 1454
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1455
                                copy_user_defined_strategy)
1456 1457
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1458
            elif opt._can_apply() and opt._is_graph_out():
1459
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1460 1461
            else:
                can_not_apply_optimizer_list.append(opt)
1462
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1463
        meta_optimizer, graph_optimizer = \
1464 1465
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1466
                copy_user_defined_strategy, valid_optimizer_list,
1467
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1468

D
Dong Daxiang 已提交
1469
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1470 1471 1472
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1473

1474 1475 1476 1477 1478 1479
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1480
        self._context = context
1481

D
Dong Daxiang 已提交
1482
        self.valid_strategy = valid_strategy
1483
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1484

1485 1486
        optimize_ops = []
        params_grads = []
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1497
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1498

1499 1500
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1501
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1502

1503
            default_program = paddle.static.default_main_program()
1504 1505 1506 1507

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1508 1509
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1510
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1511

1512 1513
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1514

1515
        if graph_optimizer:
D
Dong Daxiang 已提交
1516
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1517
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1518 1519 1520 1521
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1522 1523
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads
1524 1525
        else:
            apply_ir_passes(loss.block.program, startup_program, self)
1526

1527 1528 1529 1530 1531 1532 1533 1534
        program = paddle.static.default_main_program()
        opt_info = {}
        opt_info["mpi_size"] = self.worker_num()
        opt_info["mpi_rank"] = self.worker_index()
        for k, v in self._user_defined_strategy.trainer_desc_configs.items():
            opt_info[k] = v
        program._fleet_opt = opt_info

1535
        if self._runtime_handle is None:
1536
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1537

1538 1539
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1540 1541

        return optimize_ops, params_grads
1542 1543 1544

    @dygraph_only
    def distributed_scaler(self, scaler):
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
        def unscale_method(self, optimizer):
            if not self._enable:
                return
            if getattr(optimizer, '_param_groups', None) and isinstance(
                    optimizer._param_groups[0], dict):
                param_grads = []
                for group in optimizer._param_groups:
                    for param in group['params']:
                        if param._grad_ivar() is not None:
                            param_grads.append(param._grad_ivar())
            else:
                param_grads = [
                    param._grad_ivar() for param in optimizer._parameter_list
                    if param._grad_ivar() is not None
                ]
            _C_ops.check_finite_and_unscale(param_grads, self._scale,
                                            param_grads, self._found_inf)

            self._found_inf = paddle.cast(self._found_inf, dtype="int32")

            # TODO(shenliang03) Since dp allreduce in the optimizer is 
            # after the gradscaler, check_finite needs to synchronize global 
            # information. In the future, we should use check_group to speed.
            paddle.distributed.all_reduce(
                self._found_inf, op=paddle.distributed.ReduceOp.MAX, group=None)
            self._found_inf = paddle.cast(self._found_inf, dtype="bool")

        # Only tensor_parallel and pipeline_parallel need to modify scaler
        if self._hcg.get_parallel_mode() in (ParallelMode.TENSOR_PARALLEL,
                                             ParallelMode.PIPELINE_PARALLEL):
            scaler._unscale = MethodType(unscale_method, scaler)

        return scaler