vgg16_v2.py 5.1 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

T
typhoonzero 已提交
15 16
import gzip

T
typhoonzero 已提交
17
import paddle.v2.dataset.cifar as cifar
T
typhoonzero 已提交
18
import paddle.v2 as paddle
T
typhoonzero 已提交
19
import time
T
typhoonzero 已提交
20
import os
T
typhoonzero 已提交
21

T
typhoonzero 已提交
22 23
DATA_DIM = 3 * 32 * 32
CLASS_DIM = 10
T
typhoonzero 已提交
24 25 26 27 28
BATCH_SIZE = os.getenv("BATCH_SIZE")
if BATCH_SIZE:
    BATCH_SIZE = int(BATCH_SIZE)
else:
    BATCH_SIZE = 128
T
typhoonzero 已提交
29
print "batch_size", BATCH_SIZE
T
typhoonzero 已提交
30
NODE_COUNT = int(os.getenv("TRAINERS"))
T
typhoonzero 已提交
31
ts = 0
T
typhoonzero 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


def vgg(input, nums, class_dim):
    def conv_block(input, num_filter, groups, num_channels=None):
        return paddle.networks.img_conv_group(
            input=input,
            num_channels=num_channels,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act=paddle.activation.Relu(),
            pool_type=paddle.pooling.Max())

    assert len(nums) == 5
    # the channel of input feature is 3
    conv1 = conv_block(input, 64, nums[0], 3)
    conv2 = conv_block(conv1, 128, nums[1])
    conv3 = conv_block(conv2, 256, nums[2])
    conv4 = conv_block(conv3, 512, nums[3])
    conv5 = conv_block(conv4, 512, nums[4])

    fc_dim = 4096
    fc1 = paddle.layer.fc(input=conv5,
                          size=fc_dim,
                          act=paddle.activation.Relu(),
                          layer_attr=paddle.attr.Extra(drop_rate=0.5))
    fc2 = paddle.layer.fc(input=fc1,
                          size=fc_dim,
                          act=paddle.activation.Relu(),
                          layer_attr=paddle.attr.Extra(drop_rate=0.5))
    out = paddle.layer.fc(input=fc2,
                          size=class_dim,
                          act=paddle.activation.Softmax())
    return out


def vgg13(input, class_dim):
    nums = [2, 2, 2, 2, 2]
    return vgg(input, nums, class_dim)


def vgg16(input, class_dim):
    nums = [2, 2, 3, 3, 3]
    return vgg(input, nums, class_dim)


def vgg19(input, class_dim):
    nums = [2, 2, 4, 4, 4]
    return vgg(input, nums, class_dim)


def main():
T
typhoonzero 已提交
85
    global ts
T
typhoonzero 已提交
86
    paddle.init(use_gpu=False)
T
typhoonzero 已提交
87 88 89 90 91 92
    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(DATA_DIM))
    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(CLASS_DIM))

    extra_layers = None
T
typhoonzero 已提交
93 94
    # NOTE: for v2 distributed training need averaging updates.
    learning_rate = 1e-3 / NODE_COUNT
T
typhoonzero 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    out = vgg16(image, class_dim=CLASS_DIM)
    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
                                                         BATCH_SIZE),
        learning_rate=learning_rate / BATCH_SIZE,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=128000 * 35,
        learning_rate_schedule="discexp", )

    train_reader = paddle.batch(
        paddle.reader.shuffle(
T
typhoonzero 已提交
113
            cifar.train10(),
T
typhoonzero 已提交
114 115 116 117 118
            # To use other data, replace the above line with:
            # reader.train_reader('train.list'),
            buf_size=1000),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
T
typhoonzero 已提交
119
        cifar.test10(),
T
typhoonzero 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132
        # To use other data, replace the above line with:
        # reader.test_reader('val.list'),
        batch_size=BATCH_SIZE)

    # Create trainer
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 extra_layers=extra_layers,
                                 is_local=False)

    # End batch and end pass event handler
    def event_handler(event):
T
typhoonzero 已提交
133 134 135
        global ts, ts_pass
        if isinstance(event, paddle.event.BeginPass):
            ts_pass = time.time()
T
typhoonzero 已提交
136 137
        if isinstance(event, paddle.event.BeginIteration):
            ts = time.time()
T
typhoonzero 已提交
138 139
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 1 == 0:
T
typhoonzero 已提交
140 141 142
                print "\nPass %d, Batch %d, Cost %f, %s, spent: %f" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics,
                    time.time() - ts)
T
typhoonzero 已提交
143
        if isinstance(event, paddle.event.EndPass):
T
typhoonzero 已提交
144 145
            print "Pass %d end, spent: %f" % (event.pass_id,
                                              time.time() - ts_pass)
T
typhoonzero 已提交
146 147 148 149 150 151 152 153 154
            result = trainer.test(reader=test_reader)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    trainer.train(
        reader=train_reader, num_passes=200, event_handler=event_handler)


if __name__ == '__main__':
    main()