group_norm_op.cu 14.6 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
16
#include "cub/cub.cuh"
17 18 19
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
20
namespace cub = hipcub;
21 22
#endif

D
Dun 已提交
23
#include "paddle/fluid/operators/group_norm_op.h"
24
#include "paddle/fluid/platform/cuda_device_function.h"
25
#include "paddle/fluid/platform/cuda_primitives.h"
D
Dun 已提交
26 27 28 29

namespace paddle {
namespace operators {

30
using DataLayout = framework::DataLayout;
31 32
enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 };

P
peizhilin 已提交
33 34 35
#define CHECK_CASE(i, flags, kernel_name, ...)                              \
  if (i == flags) {                                                         \
    kernel_name<T, i><<<grid, threads, 0, dev_ctx.stream()>>>(__VA_ARGS__); \
36 37 38 39 40 41
  }

// 0 for no scale, no bias
// 1 for has scale, no bias
// 2 for no scale, has bias
// 3 for has scale, has bias
P
peizhilin 已提交
42 43 44 45 46
#define UNROLL_ALL_CASES(flags, kernel_name, ...) \
  CHECK_CASE(0, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(1, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(2, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(3, flags, kernel_name, __VA_ARGS__)
47 48 49 50 51 52 53 54 55

template <typename T>
__device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
  typedef cub::WarpReduce<T> WarpReduce;
  typename WarpReduce::TempStorage temp_storage;
  value = WarpReduce(temp_storage).Sum(value);
  if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value);
}

D
Dun 已提交
56
template <typename T>
57
__global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W,
D
Dun 已提交
58
                                              int imsize, int groups,
59 60
                                              int group_size, T* mean, T* var,
                                              const DataLayout data_layout) {
D
Dun 已提交
61 62 63
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
64
  int H = imsize / W;
D
Dun 已提交
65 66 67 68 69
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_mean = 0, x_var = 0;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
70 71 72 73 74 75 76 77
    T val;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid];
    } else {
      int hid = imid / W;
      int wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
78 79 80 81 82
    x_mean += val;
    x_var += val * val;
  }
  x_mean /= number * imsize;
  x_var /= number * imsize;
83 84
  CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean);
  CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var);
D
Dun 已提交
85 86
}

87
template <typename T, int flags>
D
Dun 已提交
88 89
__global__ void GroupNormForward(const T* x, const T* mean, const T* var,
                                 const T* scale, const T* bias, int N, int C,
90 91 92
                                 int W, int imsize, int groups, int group_size,
                                 T epsilon, T* y, T* real_var,
                                 const DataLayout data_layout) {
D
Dun 已提交
93 94 95
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
96
  int H = imsize / W;
D
Dun 已提交
97 98 99 100 101 102 103 104
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_mean = mean[bid * groups + gid];
  T x_var = var[bid * groups + gid];
  x_var = x_var - x_mean * x_mean;
  T var_inv = 1.0 / sqrt(x_var + epsilon);
  if (cid == 0 && threadIdx.x == 0) real_var[bid * groups + gid] = x_var;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
105 106 107 108 109 110 111 112 113
    T val;
    int hid, wid;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid];
    } else {
      hid = imid / W;
      wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
114
    val = (val - x_mean) * var_inv;
115 116
    if (flags & kHasScale) val *= scale[gid * group_size + cid];
    if (flags & kHasBias) val += bias[gid * group_size + cid];
117 118 119 120 121
    if (data_layout == DataLayout::kNCHW) {
      y[(bid * C + ccid) * imsize + imid] = val;
    } else {
      y[(bid * H + hid) * W * C + wid * C + ccid] = val;
    }
D
Dun 已提交
122 123 124 125 126 127 128 129
  }
}

template <typename T>
class GroupNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
130 131 132
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
133 134 135 136 137 138 139 140 141 142 143
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* x = ctx.Input<Tensor>("X");

    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
    const auto groups = ctx.Attr<int>("groups");

    const auto x_dims = x->dims();
144 145 146 147 148 149 150
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    Tensor temp_var;
    temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());

    set_zero(dev_ctx, mean, static_cast<T>(0));
    set_zero(dev_ctx, &temp_var, static_cast<T>(0));

    auto* x_data = x->data<T>();
    auto* y_data = y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();
    auto* temp_var_data = temp_var.data<T>();

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();

174 175 176
    int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
                                                   : x_dims[1] * x_dims[2]);

R
ronnywang 已提交
177 178 179
#ifdef __HIPCC__
    int block_size = std::max(std::min(256, imsize), 64);
#else
180
    int block_size = std::min(1024, imsize);
R
ronnywang 已提交
181
#endif
D
Dun 已提交
182 183 184
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
    GroupNormForwardGetMeanAndVar<T><<<grid, threads, 0, dev_ctx.stream()>>>(
185 186
        x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data,
        temp_var_data, data_layout);
187 188 189
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
    UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data,
190 191
                     scale_data, bias_data, x_dims[0], C, W, imsize, groups,
                     group_size, epsilon, y_data, var_data, data_layout);
D
Dun 已提交
192 193 194
  }
};

195
template <typename T, int flags>
196 197 198 199
__global__ void GroupNormBackwardGetMeanAndVar(
    const T* x, const T* scale, const T* bias, const T* d_y, int N, int C,
    int W, int imsize, int groups, int group_size, T epsilon, T* d_mean,
    T* d_var, T* d_scale, T* d_bias, const DataLayout data_layout) {
D
Dun 已提交
200 201 202
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
203
  int H = imsize / W;
D
Dun 已提交
204 205 206
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
207 208 209 210
  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
211 212 213
  T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0;

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
214 215 216 217 218 219 220 221 222 223
    T val, dval;
    if (data_layout == DataLayout::kNCHW) {
      val = x[(bid * C + ccid) * imsize + imid] - x_bias;
      dval = d_y[(bid * C + ccid) * imsize + imid];
    } else {
      int hid = imid / W;
      int wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias;
      dval = d_y[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
224

225 226 227 228 229 230
    d_var_data += val * dval;
    d_mean_data += dval * x_scale;

    val = val * x_scale_inv;
    d_bias_data += dval;
    d_scale_data += val * dval;
D
Dun 已提交
231
  }
232 233 234 235
  CudaAtomicAddWithWarp(&(d_mean[bid * groups + gid]), d_mean_data);
  CudaAtomicAddWithWarp(&(d_var[bid * groups + gid]), d_var_data);
  if (flags & kHasScale) CudaAtomicAddWithWarp(&(d_scale[ccid]), d_scale_data);
  if (flags & kHasBias) CudaAtomicAddWithWarp(&(d_bias[ccid]), d_bias_data);
D
Dun 已提交
236 237
}

238 239 240
template <typename T, int flags>
__global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale,
                                  const T* bias, const T* var, const T* d_mean,
241 242 243 244
                                  const T* d_var, int N, int C, int W,
                                  int imsize, int groups, int group_size,
                                  T epsilon, T* d_x,
                                  const DataLayout data_layout) {
D
Dun 已提交
245 246 247
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
248
  int H = imsize / W;
D
Dun 已提交
249 250 251 252 253
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_var = var[bid * groups + gid];
  T d_x_mean = d_mean[bid * groups + gid];
254 255 256 257 258 259 260 261 262
  T d_x_var = d_var[bid * groups + gid];

  T x_var_inv = 1.0 / sqrt(x_var + epsilon);
  T number_inv = 1.0 / (number * imsize);

  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
263 264

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    if (data_layout == DataLayout::kNCHW) {
      T tmp = x[(bid * C + ccid) * imsize + imid];
      T v_y = (tmp - x_bias) * x_scale_inv;
      T dly = d_y[(bid * C + ccid) * imsize + imid];
      d_x[(bid * C + ccid) * imsize + imid] =
          x_var_inv *
          (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
    } else {
      int hid = imid / W;
      int wid = imid % W;
      T tmp = x[(bid * H + hid) * W * C + wid * C + ccid];
      T v_y = (tmp - x_bias) * x_scale_inv;
      T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid];
      d_x[(bid * H + hid) * W * C + wid * C + ccid] =
          x_var_inv *
          (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
    }
D
Dun 已提交
282 283 284 285 286 287 288 289
  }
}

template <typename T>
class GroupNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
290 291 292
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
293
    const float epsilon = ctx.Attr<float>("epsilon");
294
    auto* x = ctx.Input<Tensor>("Y");
D
Dun 已提交
295 296
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
297
    auto* bias = ctx.Input<Tensor>("Bias");
D
Dun 已提交
298 299 300 301 302 303 304 305 306
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto groups = ctx.Attr<int>("groups");

    // init output
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto& x_dims = x->dims();
307 308 309 310 311 312 313
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
314

315
    d_x->mutable_data<T>(ctx.GetPlace());
D
Dun 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    Tensor temp_var;
    temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
    set_zero(dev_ctx, &temp_var, static_cast<T>(0));
    T* temp_var_data = temp_var.data<T>();

    Tensor temp_mean;
    temp_mean.mutable_data<T>(var->dims(), ctx.GetPlace());
    set_zero(dev_ctx, &temp_mean, static_cast<T>(0));
    T* temp_mean_data = temp_mean.data<T>();

    auto* x_data = x->data<T>();
330 331
    T* d_x_data = nullptr;
    if (d_x) d_x_data = d_x->data<T>();
D
Dun 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    auto* y_data = d_y->data<T>();
    auto* var_data = var->data<T>();
    T* d_scale_data = nullptr;
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_scale, static_cast<T>(0));
      d_scale_data = d_scale->data<T>();
    }
    T* d_bias_data = nullptr;
    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_bias, static_cast<T>(0));
      d_bias_data = d_bias->data<T>();
    }

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
349 350
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();
D
Dun 已提交
351

352 353 354
    int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
                                                   : x_dims[1] * x_dims[2]);

R
ronnywang 已提交
355 356 357
#ifdef __HIPCC__
    int block_size = std::max(std::min(256, imsize), 64);
#else
358
    int block_size = std::min(1024, imsize);
R
ronnywang 已提交
359
#endif
D
Dun 已提交
360 361
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
362 363 364
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
    UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, x_data, scale_data,
365
                     bias_data, y_data, x_dims[0], C, W, imsize, groups,
366
                     group_size, epsilon, temp_mean_data, temp_var_data,
367
                     d_scale_data, d_bias_data, data_layout);
368 369 370
    if (d_x_data != nullptr) {
      UNROLL_ALL_CASES(flags, GroupNormBackward, x_data, y_data, scale_data,
                       bias_data, var_data, temp_mean_data, temp_var_data,
371 372
                       x_dims[0], C, W, imsize, groups, group_size, epsilon,
                       d_x_data, data_layout);
373
    }
D
Dun 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    group_norm,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, double>);