device_context.h 18.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

T
tensor-tang 已提交
33
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
34
#include "mkldnn.hpp"
35
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
36 37
#endif

38
#include <map>
W
wanghuancoder 已提交
39

40
#include "glog/logging.h"
Y
Yi Wang 已提交
41 42
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
43
#ifdef PADDLE_WITH_CUDA
44
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
45
#endif
46
#define EIGEN_USE_THREADS
Q
qijun 已提交
47
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
48

W
wanghuancoder 已提交
49 50 51 52 53
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

54 55 56 57
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
#endif

Q
QI JUN 已提交
58 59 60 61 62
namespace paddle {
namespace platform {

class DeviceContext {
 public:
Z
Zeng Jinle 已提交
63
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
64
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
65

66
  virtual void Wait() const {}
Q
QI JUN 已提交
67 68
};

Q
qijun 已提交
69 70
class CPUDeviceContext : public DeviceContext {
 public:
71
  CPUDeviceContext();
Q
qijun 已提交
72
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
73

74
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
75

76 77
  Eigen::ThreadPoolDevice* eigen_pool_device() const;

L
liaogang 已提交
78
  Place GetPlace() const override;
Y
Yu Yang 已提交
79

80 81
  inline void InitPoolDevice();

Q
qijun 已提交
82
 private:
D
dzhwinter 已提交
83
  CPUPlace place_;
Q
qijun 已提交
84
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
85 86
  std::unique_ptr<Eigen::ThreadPoolDevice> eigen_pool_device_;
  std::unique_ptr<Eigen::ThreadPool> eigen_threadpool_;
Q
QI JUN 已提交
87 88
};

Y
Yang Yu 已提交
89 90 91 92 93 94 95 96
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  XPUPlace place_;
  xpu::Context* context_;

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

126
#ifdef PADDLE_WITH_CUDA
127

128
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
129
class EigenCudaStreamDevice;
S
sneaxiy 已提交
130

131 132 133 134 135
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
136
      const stream::Priority& priority = stream::Priority::kNormal);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
156 157 158 159
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
#endif
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
217 218
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
219
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
220 221 222 223 224
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
225
  void InitCuSolverContext() {
226 227
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
228 229 230
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

231 232
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
233
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
234 235 236 237 238 239 240 241 242
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
  }

G
Guo Sheng 已提交
243 244 245 246 247 248 249
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

250 251 252 253 254 255 256
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
G
Guo Sheng 已提交
257
  cusolverDnHandle_t cusolver_dn_handle_;
258 259 260
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

261
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
262
 public:
D
dzhwinter 已提交
263
  explicit CUDADeviceContext(CUDAPlace place);
264
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
265

266
  /*! \brief  Wait for all operations completion in the stream. */
267
  void Wait() const override;
Q
QI JUN 已提交
268

269
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
270
  Place GetPlace() const override;
271

K
Kexin Zhao 已提交
272
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
273 274
  int GetComputeCapability() const;

275 276 277
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

278 279 280 281 282 283
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

284 285 286
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

287 288 289
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

290 291 292
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
293
    return context()->CublasCall(callback);
294 295 296 297 298 299 300 301 302
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
303
    return context()->TensorCoreCublasCallIfAvailable(callback);
304
  }
S
sneaxiy 已提交
305

306
  /*! \brief  Return cudnn  handle in the device context. */
307
  cudnnHandle_t cudnn_handle() const;
308

S
sneaxiy 已提交
309 310 311 312 313 314 315 316 317
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
318 319
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
320
  /*! \brief  Return cuda stream in the device context. */
321
  cudaStream_t stream() const;
Q
QI JUN 已提交
322

323
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
324 325 326 327 328
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
329
#endif
Q
qingqing01 已提交
330

Y
Yu Yang 已提交
331
  template <typename Callback>
332 333
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
334 335
  }

S
sneaxiy 已提交
336 337
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
338 339 340 341 342
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
343 344
  }

345
  void ResetDefaultContext(const stream::Priority& priority) {
346 347 348
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

349
  void ResetThreadContext(const stream::Priority& priority) {
350 351 352 353 354 355 356 357 358 359
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
360

Q
QI JUN 已提交
361
 private:
D
dzhwinter 已提交
362
  CUDAPlace place_;
363
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
364

365 366 367 368 369 370
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
371

372 373
  mutable std::mutex cudnn_handle_mtx_;

374
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
375 376 377 378 379 380
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
381
#endif
Q
qingqing01 已提交
382

C
chengduo 已提交
383 384 385 386 387
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
388
  int max_threads_per_block_;
389
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
390

391
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
392
};
Q
qijun 已提交
393

394 395
class CudnnWorkspaceHandle {
 public:
396 397
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
398 399 400 401 402 403 404 405

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
406 407 408 409
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
410 411 412 413 414 415 416 417 418 419 420 421 422
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

423
  void ReallocWorkspace(size_t required_workspace_bytes);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
440
  std::mutex* mtx_;
441 442
};

Y
Yang Yu 已提交
443 444
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
445
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
446 447
};

C
chengduoZH 已提交
448
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
449 450 451 452 453 454
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
455

C
chengduoZH 已提交
456 457 458 459 460 461 462 463 464 465 466
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
467
#endif
Q
qijun 已提交
468

T
tensor-tang 已提交
469
#ifdef PADDLE_WITH_MKLDNN
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
510

T
tensor-tang 已提交
511 512
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
530 531 532
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
533
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
534

535
  // Remove all entries from the blob map
536 537
  void ResetBlobMap();

538 539 540 541
  // Set a suffix to be added to key
  void SetKeySuffix(const std::string& suffix) { key_suffix_ = suffix; }
  const std::string& GetKeySuffix(void) const { return key_suffix_; }

542 543
  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
544

545 546 547
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

548 549
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
550

551 552
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
553

554 555 556 557
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
558
 private:
559
  mkldnn::engine engine_;
560 561
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
562
  bool block_next_cache_clearing_ = false;
563
  std::string key_suffix_;  // Key identifying current Executor
T
tensor-tang 已提交
564 565 566
};
#endif

D
dzhwinter 已提交
567 568 569 570 571
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
572
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
573 574 575
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
576 577 578 579
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
580
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
581 582 583 584 585 586
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

587 588
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
589
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
590
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
591

Y
Yang Yu 已提交
592 593 594 595 596 597 598
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

599 600
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
601 602
 private:
  static DeviceContextPool* pool;
603 604
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
605 606 607
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
608 609
}  // namespace platform
}  // namespace paddle