scatter_nd_add_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/scatter_nd_add_op.h"
#include <memory>
#include <vector>
#include "paddle/fluid/framework/ddim.h"

namespace paddle {
namespace operators {

class ScatterNdAddOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of ScatterNdAddOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Index"), true,
                      "Input(Index) of ScatterNdAddOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Updates"), true,
                      "Input(Updates) of ScatterNdAddOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of ScatterNdAddOp should not be null.");

    auto ref_dims = ctx->GetInputDim("X");
    auto ref_dims_size = ref_dims.size();
    auto index_dims = ctx->GetInputDim("Index");
    auto index_dims_size = index_dims.size();
    auto updates_dims = ctx->GetInputDim("Updates");
    auto updates_dims_size = updates_dims.size();

    PADDLE_ENFORCE_LE(
        index_dims[index_dims_size - 1], ref_dims_size,
        "Input(Index).shape[-1] should be no greater than Input(X).rank");
    PADDLE_ENFORCE_GE(index_dims_size, 2UL,
                      "The rank of Input(Index) should be greater than 1");

    // update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
    std::vector<int64_t> r_updates_dims;
    for (int64_t i = 0; i < index_dims_size - 1; ++i) {
      r_updates_dims.emplace_back(index_dims[i]);
    }
    for (int64_t i = index_dims[index_dims_size - 1]; i < ref_dims_size; ++i) {
      r_updates_dims.emplace_back(ref_dims[i]);
    }

    PADDLE_ENFORCE_EQ(r_updates_dims.size(), updates_dims_size,
                      "Updates has wrong shape");

    for (int64_t i = 0; i < updates_dims_size; ++i) {
      PADDLE_ENFORCE_EQ(r_updates_dims[i], updates_dims[i],
                        "Updates has wrong shape");
    }
    ctx->SetOutputDim("Out", ref_dims);
67
    ctx->ShareLoD("X", /*->*/ "Out");
68 69 70 71 72
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
73 74
    PADDLE_ENFORCE_EQ(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                      OperatorWithKernel::IndicateVarDataType(ctx, "Updates"),
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                      "Ref and Updates must have same type");
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }
};

class ScatterNdAddGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput(framework::GradVarName("Updates"))) {
      ctx->SetOutputDim(framework::GradVarName("Updates"),
                        ctx->GetInputDim("Updates"));
    }
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"),
                        ctx->GetInputDim(framework::GradVarName("Out")));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
99 100 101
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  }
};

class ScatterNdAddOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The source input of scatter_nd_add op");
    AddInput("Index",
             "The index input of scatter_nd_add op where X will be updated");
    AddInput("Updates", "The updated value of scatter_nd_add op");
    AddOutput("Out", "The output of scatter_nd_add op");
    AddComment(R"DOC(
Scatter_nd_add Operator.

Output is obtained by applying sparse addition to a single value or slice in a Variable.

      Given:
        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]
)DOC");
  }
};

H
hong 已提交
144 145
template <typename T>
class ScatterNdAddGradMaker : public framework::SingleGradOpMaker<T> {
146
 public:
H
hong 已提交
147
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
148 149

 protected:
150
  void Apply(GradOpPtr<T> op) const override {
151
    op->SetType("scatter_nd_add_grad");
H
hong 已提交
152 153 154 155 156 157 158
    op->SetInput("Index", this->Input("Index"));
    op->SetInput("Updates", this->Input("Updates"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Updates"),
                  this->InputGrad("Updates"));
    op->SetAttrMap(this->Attrs());
159 160 161 162 163 164 165 166 167 168 169 170
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ScatterNdAddGradNoNeedBufferVarsInference,
                                      "Updates");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(scatter_nd_add, ops::ScatterNdAddOp, ops::ScatterNdAddOpMaker,
H
hong 已提交
171 172
                  ops::ScatterNdAddGradMaker<paddle::framework::OpDesc>,
                  ops::ScatterNdAddGradMaker<paddle::imperative::OpBase>);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

REGISTER_OPERATOR(scatter_nd_add_grad, ops::ScatterNdAddGradOp,
                  ops::ScatterNdAddGradNoNeedBufferVarsInference);

REGISTER_OP_CPU_KERNEL(scatter_nd_add, ops::ScatterNdAddOpKernel<float>,
                       ops::ScatterNdAddOpKernel<double>,
                       ops::ScatterNdAddOpKernel<int64_t>,
                       ops::ScatterNdAddOpKernel<int>,
                       ops::ScatterNdAddOpKernel<uint8_t>);

REGISTER_OP_CPU_KERNEL(scatter_nd_add_grad,
                       ops::ScatterNdAddGradientOpKernel<float>,
                       ops::ScatterNdAddGradientOpKernel<double>,
                       ops::ScatterNdAddGradientOpKernel<int64_t>,
                       ops::ScatterNdAddGradientOpKernel<int>,
                       ops::ScatterNdAddGradientOpKernel<uint8_t>);